You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/112917
Title: 
Monotonicity, interlacing and electrostatic interpretation of zeros of exceptional Jacobi polynomials
Author(s): 
Institution: 
  • Universidade Estadual Paulista (UNESP)
  • Universidade Estadual de Campinas (UNICAMP)
ISSN: 
0021-9045
Sponsorship: 
  • Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
  • Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Sponsorship Process Number: 
  • CNPq: 307183/2013-0
  • FAPESP: 09/13832-9
Abstract: 
Denote by (P) over cap ((alpha,beta))(n) (x) the X-1-Jacobi polynomial of degree n. These polynomials were introduced and studied recently by Gomez-Ullate, Kamran and Milson in a series of papers. In this note we establish some properties of the zeros of (P) over cap ((alpha,beta))(n) (x), such as interlacing and monotonicity with respect to the parameters a and beta. They turn out to possess an electrostatic interpretation. The vector, whose components are the zeros, is a saddle point of the energy of the corresponding logarithmic field. (c) 2014 Elsevier Inc. All rights reserved.
Issue Date: 
1-May-2014
Citation: 
Journal Of Approximation Theory. San Diego: Academic Press Inc Elsevier Science, v. 181, p. 18-29, 2014.
Time Duration: 
18-29
Publisher: 
Elsevier B.V.
Keywords: 
  • X-1 Jacobi polynomials
  • Orthogonal polynomials
  • Zeros
  • Electrostatic interpretation
Source: 
http://dx.doi.org/10.1016/j.jat.2014.01.007
URI: 
Access Rights: 
Acesso restrito
Type: 
outro
Source:
http://repositorio.unesp.br/handle/11449/112917
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.