You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/112917
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDimitrov, Dimitar K.-
dc.contributor.authorLun, Yen Chi-
dc.date.accessioned2014-12-03T13:11:09Z-
dc.date.accessioned2016-10-25T20:12:18Z-
dc.date.available2014-12-03T13:11:09Z-
dc.date.available2016-10-25T20:12:18Z-
dc.date.issued2014-05-01-
dc.identifierhttp://dx.doi.org/10.1016/j.jat.2014.01.007-
dc.identifier.citationJournal Of Approximation Theory. San Diego: Academic Press Inc Elsevier Science, v. 181, p. 18-29, 2014.-
dc.identifier.issn0021-9045-
dc.identifier.urihttp://hdl.handle.net/11449/112917-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/112917-
dc.description.abstractDenote by (P) over cap ((alpha,beta))(n) (x) the X-1-Jacobi polynomial of degree n. These polynomials were introduced and studied recently by Gomez-Ullate, Kamran and Milson in a series of papers. In this note we establish some properties of the zeros of (P) over cap ((alpha,beta))(n) (x), such as interlacing and monotonicity with respect to the parameters a and beta. They turn out to possess an electrostatic interpretation. The vector, whose components are the zeros, is a saddle point of the energy of the corresponding logarithmic field. (c) 2014 Elsevier Inc. All rights reserved.en
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
dc.format.extent18-29-
dc.language.isoeng-
dc.publisherElsevier B.V.-
dc.sourceWeb of Science-
dc.subjectX-1 Jacobi polynomialsen
dc.subjectOrthogonal polynomialsen
dc.subjectZerosen
dc.subjectElectrostatic interpretationen
dc.titleMonotonicity, interlacing and electrostatic interpretation of zeros of exceptional Jacobi polynomialsen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)-
dc.description.affiliationUniv Estadual Paulista, IBILCE, Dept Matemat Aplicada, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil-
dc.description.affiliationUniv Estadual Campinas, Inst Matemat Estat & Computacao Cient, BR-13081970 Campinas, SP, Brazil-
dc.description.affiliationUnespUniv Estadual Paulista, IBILCE, Dept Matemat Aplicada, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil-
dc.description.sponsorshipIdCNPq: 307183/2013-0-
dc.description.sponsorshipIdFAPESP: 09/13832-9-
dc.identifier.doi10.1016/j.jat.2014.01.007-
dc.identifier.wosWOS:000335277200004-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofJournal of Approximation Theory-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.