You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/113061
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMenezes, G.-
dc.contributor.authorSvaiter, B. F.-
dc.contributor.authorSvaiter, N. F.-
dc.date.accessioned2014-12-03T13:11:22Z-
dc.date.accessioned2016-10-25T20:14:00Z-
dc.date.available2014-12-03T13:11:22Z-
dc.date.available2016-10-25T20:14:00Z-
dc.date.issued2013-10-20-
dc.identifierhttp://dx.doi.org/10.1142/S0217751X13501285-
dc.identifier.citationInternational Journal Of Modern Physics A. Singapore: World Scientific Publ Co Pte Ltd, v. 28, n. 26, 16 p., 2013.-
dc.identifier.issn0217-751X-
dc.identifier.urihttp://hdl.handle.net/11449/113061-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/113061-
dc.description.abstractThe Riemann hypothesis states that all nontrivial zeros of the zeta function lie in the critical line Re(s) = 1/2. Hilbert and Polya suggested that one possible way to prove the Riemann hypothesis is to interpret the nontrivial zeros in the light of spectral theory. Using the construction of the so-called super-zeta functions or secondary zeta functions built over the Riemann nontrivial zeros and the regularity property of one of this function at the origin, we show that it is possible to extend the Hilbert-Polya conjecture to systems with countably infinite number of degrees of freedom. The sequence of the nontrivial zeros of the Riemann zeta function can be interpreted as the spectrum of a self-adjoint operator of some hypothetical system described by the functional approach to quantum field theory. However, if one considers the same situation with numerical sequences whose asymptotic distributions are not far away from the asymptotic distribution of prime numbers, the associated functional integral cannot be constructed. Finally, we discuss possible relations between the asymptotic behavior of a sequence and the analytic domain of the associated zeta function.en
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ)-
dc.format.extent16-
dc.language.isoeng-
dc.publisherWorld Scientific Publ Co Pte Ltd-
dc.sourceWeb of Science-
dc.subjectNumber theoryen
dc.subjectzeta regularizationen
dc.subjectfield theoryen
dc.titleRIEMANN ZETA ZEROS AND PRIME NUMBER SPECTRA IN QUANTUM FIELD THEORYen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionInst Matematica Pura & Aplicada-
dc.contributor.institutionCentro Brasileiro de Pesquisas Físicas (CBPF)-
dc.description.affiliationUniv Estadual Paulista, Inst Fis Teor, BR-01140070 Sao Paulo, Brazil-
dc.description.affiliationInst Matematica Pura & Aplicada, BR-22460320 Rio De Janeiro, RJ, Brazil-
dc.description.affiliationCtr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, RJ, Brazil-
dc.description.affiliationUnespUniv Estadual Paulista, Inst Fis Teor, BR-01140070 Sao Paulo, Brazil-
dc.identifier.doi10.1142/S0217751X13501285-
dc.identifier.wosWOS:000326291000005-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofInternational Journal of Modern Physics A-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.