Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/113145
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Guimaraes Pedronette, Daniel Carlos | - |
dc.contributor.author | Penatti, Otavio A. B. | - |
dc.contributor.author | Torres, Ricardo da S. | - |
dc.date.accessioned | 2014-12-03T13:11:26Z | - |
dc.date.accessioned | 2016-10-25T20:14:13Z | - |
dc.date.available | 2014-12-03T13:11:26Z | - |
dc.date.available | 2016-10-25T20:14:13Z | - |
dc.date.issued | 2014-02-01 | - |
dc.identifier | http://dx.doi.org/10.1016/j.imavis.2013.12.009 | - |
dc.identifier.citation | Image And Vision Computing. Amsterdam: Elsevier Science Bv, v. 32, n. 2, p. 120-130, 2014. | - |
dc.identifier.issn | 0262-8856 | - |
dc.identifier.uri | http://hdl.handle.net/11449/113145 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/113145 | - |
dc.description.abstract | In this paper, we present an unsupervised distance learning approach for improving the effectiveness of image retrieval tasks. We propose a Reciprocal kNN Graph algorithm that considers the relationships among ranked lists in the context of a k-reciprocal neighborhood. The similarity is propagated among neighbors considering the geometry of the dataset manifold. The proposed method can be used both for re-ranking and rank aggregation tasks. Unlike traditional diffusion process methods, which require matrix multiplication operations, our algorithm takes only a subset of ranked lists as input, presenting linear complexity in terms of computational and storage requirements. We conducted a large evaluation protocol involving shape, color, and texture descriptors, various datasets, and comparisons with other post-processing approaches. The re-ranking and rank aggregation algorithms yield better results in terms of effectiveness performance than various state-of-the-art algorithms recently proposed in the literature, achieving bull's eye and MAP scores of 100% on the well-known MPEG-7 shape dataset (C) 2013 Elsevier B.V. All rights reserved. | en |
dc.description.sponsorship | AMD | - |
dc.description.sponsorship | FAEPEX | - |
dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | - |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | - |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | - |
dc.format.extent | 120-130 | - |
dc.language.iso | eng | - |
dc.publisher | Elsevier B.V. | - |
dc.source | Web of Science | - |
dc.subject | Content-based image retrieval | en |
dc.subject | Re-ranking | en |
dc.subject | Rank aggregation | en |
dc.title | Unsupervised manifold learning using Reciprocal kNN Graphs in image re-ranking and rank aggregation tasks | en |
dc.type | outro | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.contributor.institution | Universidade Estadual de Campinas (UNICAMP) | - |
dc.contributor.institution | SAMSUNG Res Inst | - |
dc.description.affiliation | Univ Estadual Paulista UNESP, Dept Stat Appl Math & Comp, BR-13506900 Rio Claro, SP, Brazil | - |
dc.description.affiliation | Univ Estadual Campinas, IC, RECOD Lab, BR-13083852 Campinas, SP, Brazil | - |
dc.description.affiliation | SAMSUNG Res Inst, BR-13097104 Campinas, SP, Brazil | - |
dc.description.affiliationUnesp | Univ Estadual Paulista UNESP, Dept Stat Appl Math & Comp, BR-13506900 Rio Claro, SP, Brazil | - |
dc.identifier.doi | 10.1016/j.imavis.2013.12.009 | - |
dc.identifier.wos | WOS:000332905300003 | - |
dc.rights.accessRights | Acesso restrito | - |
dc.relation.ispartof | Image And Vision Computing | - |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.