You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/113145
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGuimaraes Pedronette, Daniel Carlos-
dc.contributor.authorPenatti, Otavio A. B.-
dc.contributor.authorTorres, Ricardo da S.-
dc.date.accessioned2014-12-03T13:11:26Z-
dc.date.accessioned2016-10-25T20:14:13Z-
dc.date.available2014-12-03T13:11:26Z-
dc.date.available2016-10-25T20:14:13Z-
dc.date.issued2014-02-01-
dc.identifierhttp://dx.doi.org/10.1016/j.imavis.2013.12.009-
dc.identifier.citationImage And Vision Computing. Amsterdam: Elsevier Science Bv, v. 32, n. 2, p. 120-130, 2014.-
dc.identifier.issn0262-8856-
dc.identifier.urihttp://hdl.handle.net/11449/113145-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/113145-
dc.description.abstractIn this paper, we present an unsupervised distance learning approach for improving the effectiveness of image retrieval tasks. We propose a Reciprocal kNN Graph algorithm that considers the relationships among ranked lists in the context of a k-reciprocal neighborhood. The similarity is propagated among neighbors considering the geometry of the dataset manifold. The proposed method can be used both for re-ranking and rank aggregation tasks. Unlike traditional diffusion process methods, which require matrix multiplication operations, our algorithm takes only a subset of ranked lists as input, presenting linear complexity in terms of computational and storage requirements. We conducted a large evaluation protocol involving shape, color, and texture descriptors, various datasets, and comparisons with other post-processing approaches. The re-ranking and rank aggregation algorithms yield better results in terms of effectiveness performance than various state-of-the-art algorithms recently proposed in the literature, achieving bull's eye and MAP scores of 100% on the well-known MPEG-7 shape dataset (C) 2013 Elsevier B.V. All rights reserved.en
dc.description.sponsorshipAMD-
dc.description.sponsorshipFAEPEX-
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)-
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
dc.format.extent120-130-
dc.language.isoeng-
dc.publisherElsevier B.V.-
dc.sourceWeb of Science-
dc.subjectContent-based image retrievalen
dc.subjectRe-rankingen
dc.subjectRank aggregationen
dc.titleUnsupervised manifold learning using Reciprocal kNN Graphs in image re-ranking and rank aggregation tasksen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)-
dc.contributor.institutionSAMSUNG Res Inst-
dc.description.affiliationUniv Estadual Paulista UNESP, Dept Stat Appl Math & Comp, BR-13506900 Rio Claro, SP, Brazil-
dc.description.affiliationUniv Estadual Campinas, IC, RECOD Lab, BR-13083852 Campinas, SP, Brazil-
dc.description.affiliationSAMSUNG Res Inst, BR-13097104 Campinas, SP, Brazil-
dc.description.affiliationUnespUniv Estadual Paulista UNESP, Dept Stat Appl Math & Comp, BR-13506900 Rio Claro, SP, Brazil-
dc.identifier.doi10.1016/j.imavis.2013.12.009-
dc.identifier.wosWOS:000332905300003-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofImage And Vision Computing-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.