You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/113165
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBueno, Paulo Roberto-
dc.contributor.authorDavis, Jason J.-
dc.date.accessioned2014-12-03T13:11:27Z-
dc.date.accessioned2016-10-25T20:14:16Z-
dc.date.available2014-12-03T13:11:27Z-
dc.date.available2016-10-25T20:14:16Z-
dc.date.issued2014-02-04-
dc.identifierhttp://dx.doi.org/10.1021/ac403135b-
dc.identifier.citationAnalytical Chemistry. Washington: Amer Chemical Soc, v. 86, n. 3, p. 1337-1341, 2014.-
dc.identifier.issn0003-2700-
dc.identifier.urihttp://hdl.handle.net/11449/113165-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/113165-
dc.description.abstractThe Fermi level or electrochemical signature of a molecular film containing accessible orbital states is ultimately governed by two measurable series energetic components, an energy loss term related to the charging of appropriately addressable molecular orbitals (resonant or charge transfer resistance), and an energy storage or electrochemical capacitance component. The latter conservative term is further divisible into two series contributions, one being a classic electrostatic term and the other arising from the involvement and charging of quantized molecular orbital states. These can be tuned in and out of resonance with underlying electrode states with an efficiency that governs electron transfer kinetics and an energetic spread dependent on solution dielectric. These features are experimentally resolved by an impedance derived capacitance analysis, a methodology which ultimately enables a convenient spectroscopic mapping of electron transfer efficacy, and of density of states within molecular films.en
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
dc.description.sponsorshipUNESP-
dc.format.extent1337-1341-
dc.language.isoeng-
dc.publisherAmer Chemical Soc-
dc.sourceWeb of Science-
dc.titleMeasuring Quantum Capacitance in Energetically Addressable Molecular Layersen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionUniv Oxford-
dc.description.affiliationUniv Estadual Paulista, Inst Chem, Dept Chem Phys, Sao Paulo State Univ, BR-14800900 Araraquara, Sao Paulo, Brazil-
dc.description.affiliationUniv Oxford, Dept Chem, Oxford OX1 3QZ, England-
dc.description.affiliationUnespUniv Estadual Paulista, Inst Chem, Dept Chem Phys, Sao Paulo State Univ, BR-14800900 Araraquara, Sao Paulo, Brazil-
dc.identifier.doi10.1021/ac403135b-
dc.identifier.wosWOS:000331014800005-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofAnalytical Chemistry-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.