Você está no menu de acessibilidade

Utilize este identificador para citar ou criar um link para este item: http://acervodigital.unesp.br/handle/11449/113404
Título: 
A genetic algorithm/mathematical programming approach to solve a two-level soft drink production problem
Autor(es): 
Instituição: 
  • Universidade de São Paulo (USP)
  • Universidade Estadual de Campinas (UNICAMP)
  • Universidade Estadual Paulista (UNESP)
  • Universidade Federal de São Carlos (UFSCar)
ISSN: 
0305-0548
Financiador: 
  • Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
  • Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Número do financiamento: 
  • CNPq: 483474/2013-4
  • FAPESP: 10/10133-0
Resumo: 
This study applies a genetic algorithm embedded with mathematical programming techniques to solve a synchronized and integrated two-level lot sizing and scheduling problem motivated by a real-world problem that arises in soft drink production. The problem considers a production process compounded by raw material preparation/storage and soft drink bottling. The lot sizing and scheduling decisions should be made simultaneously for raw material preparation/storage in tanks and soft drink bottling in several production lines minimizing inventory, shortage and setup costs. The literature provides mixed-integer programming models for this problem, as well as solution methods based on evolutionary algorithms and relax-and-fix approaches. The method applied by this paper uses a new approach which combines a genetic algorithm (GA) with mathematical programming techniques. The GA deals with sequencing decisions for production lots, so that an exact method can solve a simplified linear programming model, responsible for lot sizing decisions. The computational results show that this evolutionary/mathematical programming approach outperforms the literature methods in terms of production costs and run times when applied to a set of real-world problem instances provided by a soft drink company. (C) 2014 Elsevier Ltd. All rights reserved.
Data de publicação: 
1-Ago-2014
Citação: 
Computers & Operations Research. Oxford: Pergamon-elsevier Science Ltd, v. 48, p. 40-52, 2014.
Duração: 
40-52
Publicador: 
Elsevier B.V.
Palavras-chaves: 
  • Genetic algorithms
  • Mathematical programming
  • Mathheuristics
  • Soft drink industry
  • Production planning
  • Lot sizing and scheduling
Fonte: 
http://dx.doi.org/10.1016/j.cor.2014.02.012
Endereço permanente: 
Direitos de acesso: 
Acesso restrito
Tipo: 
outro
Fonte completa:
http://repositorio.unesp.br/handle/11449/113404
Aparece nas coleções:Artigos, TCCs, Teses e Dissertações da Unesp

Não há nenhum arquivo associado com este item.
 

Itens do Acervo digital da UNESP são protegidos por direitos autorais reservados a menos que seja expresso o contrário.