You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/113404
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMotta Toledo, Claudio Fabiano-
dc.contributor.authorOliveira, Lucas de-
dc.contributor.authorPereira, Rodrigo de Freitas-
dc.contributor.authorFranca, Paulo Morelato-
dc.contributor.authorMorabito, Reinaldo-
dc.date.accessioned2014-12-03T13:11:40Z-
dc.date.accessioned2016-10-25T20:14:48Z-
dc.date.available2014-12-03T13:11:40Z-
dc.date.available2016-10-25T20:14:48Z-
dc.date.issued2014-08-01-
dc.identifierhttp://dx.doi.org/10.1016/j.cor.2014.02.012-
dc.identifier.citationComputers & Operations Research. Oxford: Pergamon-elsevier Science Ltd, v. 48, p. 40-52, 2014.-
dc.identifier.issn0305-0548-
dc.identifier.urihttp://hdl.handle.net/11449/113404-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/113404-
dc.description.abstractThis study applies a genetic algorithm embedded with mathematical programming techniques to solve a synchronized and integrated two-level lot sizing and scheduling problem motivated by a real-world problem that arises in soft drink production. The problem considers a production process compounded by raw material preparation/storage and soft drink bottling. The lot sizing and scheduling decisions should be made simultaneously for raw material preparation/storage in tanks and soft drink bottling in several production lines minimizing inventory, shortage and setup costs. The literature provides mixed-integer programming models for this problem, as well as solution methods based on evolutionary algorithms and relax-and-fix approaches. The method applied by this paper uses a new approach which combines a genetic algorithm (GA) with mathematical programming techniques. The GA deals with sequencing decisions for production lots, so that an exact method can solve a simplified linear programming model, responsible for lot sizing decisions. The computational results show that this evolutionary/mathematical programming approach outperforms the literature methods in terms of production costs and run times when applied to a set of real-world problem instances provided by a soft drink company. (C) 2014 Elsevier Ltd. All rights reserved.en
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
dc.format.extent40-52-
dc.language.isoeng-
dc.publisherElsevier B.V.-
dc.sourceWeb of Science-
dc.subjectGenetic algorithmsen
dc.subjectMathematical programmingen
dc.subjectMathheuristicsen
dc.subjectSoft drink industryen
dc.subjectProduction planningen
dc.subjectLot sizing and schedulingen
dc.titleA genetic algorithm/mathematical programming approach to solve a two-level soft drink production problemen
dc.typeoutro-
dc.contributor.institutionUniversidade de São Paulo (USP)-
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)-
dc.description.affiliationUniv Sao Paulo, Inst Math & Comp Sci, BR-13566590 Sao Carlos, SP, Brazil-
dc.description.affiliationUniv Estadual Campinas, Inst Comp, BR-13083852 Campinas, SP, Brazil-
dc.description.affiliationState Univ Sao Paulo, Dept Math & Comp Sci, BR-19060900 Presidente Prudente, SP, Brazil-
dc.description.affiliationUniv Fed Sao Carlos, Dept Prod Engn, BR-13565905 Sao Carlos, SP, Brazil-
dc.description.affiliationUnespState Univ Sao Paulo, Dept Math & Comp Sci, BR-19060900 Presidente Prudente, SP, Brazil-
dc.description.sponsorshipIdCNPq: 483474/2013-4-
dc.description.sponsorshipIdFAPESP: 10/10133-0-
dc.identifier.doi10.1016/j.cor.2014.02.012-
dc.identifier.wosWOS:000336471900005-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofComputers & Operations Research-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.