Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/113412
- Title:
- Multiplicity of solutions for a biharmonic equation with subcritical or critical growth
- Fed Univ Para
- Universidade Estadual Paulista (UNESP)
- 1370-1444
- Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
- CNPq: 300705/2008-5
- We consider the fourth-order problem{epsilon(4)Delta(2)u + V(x)u = f(u) + gamma vertical bar u vertical bar(2)**-(2)u in R-N u is an element of H-2(R-N),where epsilon > 0, N >= 5, V is a positive continuous potential, f is a function with subcritical growth and gamma is an element of {0,1}. We relate the number of solutions with the topology of the set where V attain its minimum values. We consider the subcritical case gamma = 0 and the critical case gamma = 1. In the proofs we apply Ljusternik-Schnirelmann theory.
- 1-Jul-2013
- Bulletin of the Belgian Mathematical Society-simon Stevin. Brussels: Belgian Mathematical Soc Triomphe, v. 20, n. 3, p. 519-534, 2013.
- 519-534
- Belgian Mathematical Soc Triomphe
- variational methods
- biharmonic equations
- nontrivial solutions
- http://projecteuclid.org/euclid.bbms/1378314513
- Acesso restrito
- outro
- http://repositorio.unesp.br/handle/11449/113412
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.