You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/113507
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNakamura, Rodrigo Y. M.-
dc.contributor.authorGarcia Fonseca, Leila Maria-
dc.contributor.authorSantos, Jefersson Alex dos-
dc.contributor.authorTorres, Ricardo da S.-
dc.contributor.authorYang, Xin-She-
dc.contributor.authorPapa, João Paulo-
dc.date.accessioned2014-12-03T13:11:45Z-
dc.date.accessioned2016-10-25T20:15:03Z-
dc.date.available2014-12-03T13:11:45Z-
dc.date.available2016-10-25T20:15:03Z-
dc.date.issued2014-04-01-
dc.identifierhttp://dx.doi.org/10.1109/TGRS.2013.2258351-
dc.identifier.citationIeee Transactions On Geoscience And Remote Sensing. Piscataway: Ieee-inst Electrical Electronics Engineers Inc, v. 52, n. 4, p. 2126-2137, 2014.-
dc.identifier.issn0196-2892-
dc.identifier.urihttp://hdl.handle.net/11449/113507-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/113507-
dc.description.abstractAlthough hyperspectral images acquired by on-board satellites provide information from a wide range of wavelengths in the spectrum, the obtained information is usually highly correlated. This paper proposes a novel framework to reduce the computation cost for large amounts of data based on the efficiency of the optimum-path forest (OPF) classifier and the power of metaheuristic algorithms to solve combinatorial optimizations. Simulations on two public data sets have shown that the proposed framework can indeed improve the effectiveness of the OPF and considerably reduce data storage costs.en
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)-
dc.description.sponsorshipAMD-
dc.description.sponsorshipMicrosoft-
dc.format.extent2126-2137-
dc.language.isoeng-
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)-
dc.sourceWeb of Science-
dc.subjectEvolutionary computationen
dc.subjectheuristic algorithmsen
dc.subjecthyperspectral imagingen
dc.subjectimage classificationen
dc.subjectpattern recognitionen
dc.titleNature-Inspired Framework for Hyperspectral Band Selectionen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionInstituto Nacional de Pesquisas Espaciais (INPE)-
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)-
dc.contributor.institutionMiddlesex Univ-
dc.description.affiliationSao Paulo State Univ, Dept Comp, BR-17001970 Bauru, Brazil-
dc.description.affiliationINPE Natl Inst Space Res, Image Proc Div, BR-12227001 Sao Jose Dos Campos, Brazil-
dc.description.affiliationUniv Estadual Campinas, Inst Comp, BR-13083852 Campinas, SP, Brazil-
dc.description.affiliationMiddlesex Univ, Sch Sci & Technol, London NW4 4BT, England-
dc.description.affiliationUnespSao Paulo State Univ, Dept Comp, BR-17001970 Bauru, Brazil-
dc.description.sponsorshipIdFAPESP: 12/18768-0-
dc.description.sponsorshipIdFAPESP: 11/14058-5-
dc.description.sponsorshipIdFAPESP: 09/16206-1-
dc.description.sponsorshipIdFAPESP: 09/18438-7-
dc.description.sponsorshipIdFAPESP: 08/58112-0-
dc.description.sponsorshipIdFAPESP: 08/58528-2-
dc.description.sponsorshipIdCNPq: 303182/2011-3-
dc.description.sponsorshipIdCNPq: 306580/2012-8-
dc.description.sponsorshipIdCNPq: 484254/2012-0-
dc.identifier.doi10.1109/TGRS.2013.2258351-
dc.identifier.wosWOS:000329527000018-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofIEEE Transactions on Geoscience and Remote Sensing-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.