You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/113617
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLima, Fernando P. A.-
dc.contributor.authorLotufo, Anna D. P.-
dc.contributor.authorMinussi, Carlos R.-
dc.date.accessioned2014-12-03T13:11:50Z-
dc.date.accessioned2016-10-25T20:15:19Z-
dc.date.available2014-12-03T13:11:50Z-
dc.date.available2016-10-25T20:15:19Z-
dc.date.issued2014-04-01-
dc.identifierhttp://dx.doi.org/10.1016/j.epsr.2013.12.010-
dc.identifier.citationElectric Power Systems Research. Lausanne: Elsevier Science Sa, v. 109, p. 54-62, 2014.-
dc.identifier.issn0378-7796-
dc.identifier.urihttp://hdl.handle.net/11449/113617-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/113617-
dc.description.abstractThis paper presents the development of an intelligent system named normal pass filter to generate a disturbance database in electrical distribution systems. This is a system that aims to extract examples (and proper registration) of real disturbances from voltage and current measurements that are available by SCADA system. This filter is developed based on negative-selection artificial immune systems. The negative selection algorithm of an immune system is used to determine the presence of abnormalities. If an abnormality is detected, the system records the abnormal signal in a database. This database is a set of disturbance examples (e.g., harmonic, sag, high-impedance fault) for use in many purposes, for example, for training artificial neural networks for intelligent fault diagnosis and prognosis of electrical distribution systems. Recently, these diagnosis systems have been emphasized, particularly in smart grid environments. To exemplify the efficiency of the method, two electrical distribution systems with 33, and 134 busses were examined. (C) 2013 Elsevier B.V. All rights reserved.en
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
dc.format.extent54-62-
dc.language.isoeng-
dc.publisherElsevier B.V.-
dc.sourceWeb of Science-
dc.subjectFilteren
dc.subjectAnomaly detectionen
dc.subjectElectrical distribution systemsen
dc.subjectArtificial immune systemsen
dc.titleDisturbance detection for optimal database storage in electrical distribution systems using artificial immune systems with negative selectionen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationUniv Estadual Paulista, UNESP, Dept Elect Engn, BR-15385000 Ilha Solteira, SP, Brazil-
dc.description.affiliationUnespUniv Estadual Paulista, UNESP, Dept Elect Engn, BR-15385000 Ilha Solteira, SP, Brazil-
dc.description.sponsorshipIdFAPESP: 11/06394-5-
dc.identifier.doi10.1016/j.epsr.2013.12.010-
dc.identifier.wosWOS:000332496700006-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofElectric Power Systems Research-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.