Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/114130
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Oliveira, Ismênia Ribeiro de | - |
dc.contributor.author | Teixeira, Daniel de Bortoli | - |
dc.contributor.author | Panosso, Alan Rodrigo | - |
dc.contributor.author | Júnior, José Marques | - |
dc.contributor.author | Pereira, Gener Tadeu | - |
dc.date.accessioned | 2015-02-02T12:39:14Z | - |
dc.date.accessioned | 2016-10-25T20:16:23Z | - |
dc.date.available | 2015-02-02T12:39:14Z | - |
dc.date.available | 2016-10-25T20:16:23Z | - |
dc.date.issued | 2014-09-01 | - |
dc.identifier | http://dx.doi.org/10.1590/S0100-204X2014000900007 | - |
dc.identifier.citation | Pesquisa Agropecuária Brasileira. Embrapa Informação TecnológicaPesquisa Agropecuária Brasileira, v. 49, n. 9, p. 708-718, 2014. | - |
dc.identifier.issn | 0100-204X | - |
dc.identifier.uri | http://hdl.handle.net/11449/114130 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/114130 | - |
dc.description.abstract | The objective of this work was to evaluate the performance of the sequential Gaussian simulation (SGS) and the sequential indicator simulation (SIS) for modeling the uncertainty of available K predictions in a sugarcane area, and to compare both simulations to the already established method of ordinary kriging (OK). A sampling grid with 626 points was installed in an area of 200 ha, in the municipality of Tabapuã, in the state of São Paulo, Brazil. The simulations reproduced the variability in the available K sample data, whereas OK overestimated the low K levels and underestimated the high ones. The standard deviation map obtained from OK showed less variation along the studied area when compared to the maps obtained from the simulations. SIS achieved an accuracy 22% higher than that obtained by SGS for modeling the conditional distribution function of K. The simulations have higher efficiency than OK for modeling the uncertainty in the spatial distribution of K. SIS has better performance than SGS for estimating the levels of available K in sugarcane area. | en |
dc.description.abstract | O objetivo deste trabalho foi avaliar o desempenho da simulação sequencial gaussiana (SSG) e da simulação sequencial indicatriz (SSI) na modelagem da incerteza das predições do K disponível em área de cana-de-açúcar, e comparar as simulações com o método já consagrado de krigagem ordinária (KO). Uma malha amostral com 626 pontos foi instalada em área de 200 ha, no Município de Tabapuã, em São Paulo. As simulações reproduziram a variabilidade dos dados amostrais de K disponível, enquanto a KO superestimou os baixos teores de K e subestimou os altos. O mapa de desvio-padrão obtido a partir da KO mostrou menor variação ao longo da área de estudo, quando comparado aos mapas obtidos a partir das simulações. A SSI obteve acurácia 22% superior à obtida pela SSG, na modelagem da função de distribuição condicional do K. As simulações apresentam maior eficiência que a KO para modelar incerteza na distribuição espacial do K. A SSI apresenta melhor desempenho que a SSG na estimativa dos teores de K disponível, em área de cana-de-açúcar. | pt |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | - |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | - |
dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | - |
dc.format.extent | 708-718 | - |
dc.language.iso | por | - |
dc.publisher | Embrapa Informação TecnológicaPesquisa Agropecuária Brasileira | - |
dc.source | SciELO | - |
dc.subject | Fertilidade do solo | pt |
dc.subject | Geoestatística | pt |
dc.subject | Krigagem | pt |
dc.subject | Simulação sequencial gaussiana | pt |
dc.subject | Simulação sequencial indicatriz | pt |
dc.subject | Variabilidade espacial. | pt |
dc.subject | Soil fertility | en |
dc.subject | Geostatistics | en |
dc.subject | Kriging | en |
dc.subject | Sequential Gaussian simulation | en |
dc.subject | Sequential indicator simulation | en |
dc.subject | Spatial variability. | en |
dc.title | Modelagem e quantificação da incerteza espacial do potássio disponível no solo por simulações estocásticas | pt |
dc.title.alternative | Modeling and quantification of available potassium spatialuncertainty in the soil by stochastic simulations | en |
dc.type | outro | - |
dc.contributor.institution | Universidade Federal do Maranhão (UFMA) | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.description.affiliation | Universidade Federal do Maranhão Centro de Ciências Agrárias e Ambientais | - |
dc.description.affiliation | Universidade Estadual Paulista (Unesp) Faculdade de Ciências Agrárias e Veterinárias | - |
dc.description.affiliation | Unesp Faculdade de Engenharia de Ilha Solteira | - |
dc.description.affiliationUnesp | Universidade Estadual Paulista (Unesp) Faculdade de Ciências Agrárias e Veterinárias | - |
dc.description.affiliationUnesp | Unesp Faculdade de Engenharia de Ilha Solteira | - |
dc.identifier.doi | 10.1590/S0100-204X2014000900007 | - |
dc.identifier.scielo | S0100-204X2014000900708 | - |
dc.rights.accessRights | Acesso aberto | - |
dc.identifier.file | S0100-204X2014000900708.pdf | - |
dc.relation.ispartof | Pesquisa Agropecuária Brasileira | - |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.