Please use this identifier to cite or link to this item:
        
        
        
        http://acervodigital.unesp.br/handle/11449/116222Full metadata record
| DC Field | Value | Language | 
|---|---|---|
| dc.contributor.author | Martins, G. B. | - | 
| dc.contributor.author | Afonso, L. C. S. | - | 
| dc.contributor.author | Osaku, D. | - | 
| dc.contributor.author | Almeida, Jurandy | - | 
| dc.contributor.author | Papa, João Paulo | - | 
| dc.contributor.author | BayroCorrochano, E. | - | 
| dc.contributor.author | Hancock, E. | - | 
| dc.date.accessioned | 2015-03-18T15:52:36Z | - | 
| dc.date.accessioned | 2016-10-25T20:23:38Z | - | 
| dc.date.available | 2015-03-18T15:52:36Z | - | 
| dc.date.available | 2016-10-25T20:23:38Z | - | 
| dc.date.issued | 2014-01-01 | - | 
| dc.identifier | http://dx.doi.org/10.1007/978-3-319-12568-8_108 | - | 
| dc.identifier.citation | Progress In Pattern Recognition Image Analysis, Computer Vision, And Applications, Ciarp 2014. Berlin: Springer-verlag Berlin, v. 8827, p. 893-900, 2014. | - | 
| dc.identifier.issn | 0302-9743 | - | 
| dc.identifier.uri | http://hdl.handle.net/11449/116222 | - | 
| dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/116222 | - | 
| dc.description.abstract | This paper introduces the Optimum-Path Forest (OPF) classifier for static video summarization, being its results comparable to the ones obtained by some state-of-the-art video summarization techniques. The experimental section has been conducted using several image descriptors in two public datasets, followed by an analysis of OPF robustness regarding one ad-hoc parameter. Future works are guided to improve OPF effectiveness on each distinct video category. | en | 
| dc.format.extent | 893-900 | - | 
| dc.language.iso | eng | - | 
| dc.publisher | Springer | - | 
| dc.source | Web of Science | - | 
| dc.subject | video summarization | en | 
| dc.subject | optimum-path forest | en | 
| dc.subject | clustering | en | 
| dc.title | Static Video Summarization through Optimum-Path Forest Clustering | en | 
| dc.type | outro | - | 
| dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - | 
| dc.description.affiliation | Sao Paulo State Univ, UNESP, Dept Comp, BR-17033360 Bauru, SP, Brazil | - | 
| dc.description.affiliationUnesp | Sao Paulo State Univ, UNESP, Dept Comp, BR-17033360 Bauru, SP, Brazil | - | 
| dc.identifier.doi | 10.1007/978-3-319-12568-8_108 | - | 
| dc.identifier.wos | WOS:000346407400108 | - | 
| dc.rights.accessRights | Acesso restrito | - | 
| dc.relation.ispartof | Progress In Pattern Recognition Image Analysis, Computer Vision, And Applications, Ciarp 2014 | - | 
| Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp | |
There are no files associated with this item.
    
 
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
