You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/116243
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBastos, Waldemar D.-
dc.contributor.authorMiyagaki, Olimpio H.-
dc.contributor.authorVieira, Ronei S.-
dc.date.accessioned2015-03-18T15:52:55Z-
dc.date.accessioned2016-10-25T20:24:20Z-
dc.date.available2015-03-18T15:52:55Z-
dc.date.available2016-10-25T20:24:20Z-
dc.date.issued2014-12-01-
dc.identifierhttp://dx.doi.org/10.1007/s00032-014-0224-8-
dc.identifier.citationMilan Journal Of Mathematics. Basel: Springer Basel Ag, v. 82, n. 2, p. 213-231, 2014.-
dc.identifier.issn1424-9286-
dc.identifier.urihttp://hdl.handle.net/11449/116243-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/116243-
dc.description.abstractWe establish a result on the existence of a positive solution for the following class of degenerate quasilinear elliptic problems:(P) {-Delta(up)u + V(x)vertical bar x vertical bar-(ap+)vertical bar u vertical bar(p-2)u = K(x)f(x, u), in R-N, u > 0, in R-N, u epsilon D-u(1,p)(R-N),where -Delta(ap)u = -div(vertical bar x vertical bar(-ap)vertical bar del u vertical bar(p-2)del u), 1 < p < N, -infinity < a < N-p/p, a <= e <= a + 1, d = 1 + a - e, and p* := p*(a, e) = Np/N-dp denotes the Hardy-Sobolev's , and denotes the Hardy-Sobolev's critical exponent, V and K are bounded nonnegative continuous potentials, K vanishes at infinity, and f has a subcritical growth at infinity. The technique used here is the variational approach.en
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)-
dc.description.sponsorshipCentro Federal de Educacao Tecnologica de Minas Gerais/Brazil-
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)-
dc.format.extent213-231-
dc.language.isoeng-
dc.publisherSpringer-
dc.sourceWeb of Science-
dc.subjectPositive solutionsen
dc.subjectSchrodinger operatoren
dc.subjectVariational methods for second-order elliptic equationsen
dc.subjectDegenerate elliptic equationsen
dc.titlePositive Solution for a Class of Degenerate Quasilinear Elliptic Equations in R-Nen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionUniv Fed Juiz de Fora-
dc.contributor.institutionCtr Fed Educ Tecnol Minas Gerais-
dc.description.affiliationUniv Estadual Paulista, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil-
dc.description.affiliationUniv Fed Juiz de Fora, BR-36036330 Juiz De Fora, MG, Brazil-
dc.description.affiliationCtr Fed Educ Tecnol Minas Gerais, BR-35503822 Divinopolis, MG, Brazil-
dc.description.affiliationUnespUniv Estadual Paulista, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil-
dc.description.sponsorshipIdFAPEMIG: CEX-APQ 00025-11-
dc.identifier.doi10.1007/s00032-014-0224-8-
dc.identifier.wosWOS:000345142800002-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofMilan Journal Of Mathematics-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.