Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/116350
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Libardi, Alice Kimie Miwa | - |
dc.contributor.author | Sharko, Vladimir | - |
dc.date.accessioned | 2015-03-18T15:53:05Z | - |
dc.date.accessioned | 2016-10-25T20:24:35Z | - |
dc.date.available | 2015-03-18T15:53:05Z | - |
dc.date.available | 2016-10-25T20:24:35Z | - |
dc.date.issued | 2014-08-01 | - |
dc.identifier | http://dx.doi.org/10.1007/s11253-014-0935-6 | - |
dc.identifier.citation | Ukrainian Mathematical Journal. New York: Springer, v. 66, n. 3, p. 347-351, 2014. | - |
dc.identifier.issn | 0041-5995 | - |
dc.identifier.uri | http://hdl.handle.net/11449/116350 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/116350 | - |
dc.description.abstract | Let M2n+1 be a C(CPn) -singular manifold. We study functions and vector fields with isolated singularities on M2n+1. A C(CPn) -singular manifold is obtained from a smooth manifold M2n+1 with boundary in the form of a disjoint union of complex projective spaces CPn boolean OR CPn boolean OR ... boolean OR CPn with subsequent capture of a cone over each component of the boundary. Let M2n+1 be a compact C(CPn) -singular manifold with k singular points. The Euler characteristic of M2n+1 is equal to chi(M2n+1) = k(1 - n)/2. Let M2n+1 be a C(CPn)-singular manifold with singular points m(1), ..., m(k). Suppose that, on M2n+1, there exists an almost smooth vector field V (x) with finite number of zeros m(1), ..., m(k), x(1), ..., x(1). Then chi(M2n+1) = Sigma(l)(i=1) ind(x(i)) + Sigma(k)(i=1) ind(m(i)). | en |
dc.format.extent | 347-351 | - |
dc.language.iso | eng | - |
dc.publisher | Springer | - |
dc.source | Web of Science | - |
dc.title | Functions and vector fields on C(CPn)-singular manifolds | en |
dc.type | outro | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.description.affiliation | IGCE Unesp Univ, Sao Paulo, Brazil | - |
dc.description.affiliationUnesp | IGCE Unesp Univ, Sao Paulo, Brazil | - |
dc.identifier.doi | 10.1007/s11253-014-0935-6 | - |
dc.identifier.wos | WOS:000345186200003 | - |
dc.rights.accessRights | Acesso restrito | - |
dc.relation.ispartof | Ukrainian Mathematical Journal | - |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.