You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/116350
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLibardi, Alice Kimie Miwa-
dc.contributor.authorSharko, Vladimir-
dc.date.accessioned2015-03-18T15:53:05Z-
dc.date.accessioned2016-10-25T20:24:35Z-
dc.date.available2015-03-18T15:53:05Z-
dc.date.available2016-10-25T20:24:35Z-
dc.date.issued2014-08-01-
dc.identifierhttp://dx.doi.org/10.1007/s11253-014-0935-6-
dc.identifier.citationUkrainian Mathematical Journal. New York: Springer, v. 66, n. 3, p. 347-351, 2014.-
dc.identifier.issn0041-5995-
dc.identifier.urihttp://hdl.handle.net/11449/116350-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/116350-
dc.description.abstractLet M2n+1 be a C(CPn) -singular manifold. We study functions and vector fields with isolated singularities on M2n+1. A C(CPn) -singular manifold is obtained from a smooth manifold M2n+1 with boundary in the form of a disjoint union of complex projective spaces CPn boolean OR CPn boolean OR ... boolean OR CPn with subsequent capture of a cone over each component of the boundary. Let M2n+1 be a compact C(CPn) -singular manifold with k singular points. The Euler characteristic of M2n+1 is equal to chi(M2n+1) = k(1 - n)/2. Let M2n+1 be a C(CPn)-singular manifold with singular points m(1), ..., m(k). Suppose that, on M2n+1, there exists an almost smooth vector field V (x) with finite number of zeros m(1), ..., m(k), x(1), ..., x(1). Then chi(M2n+1) = Sigma(l)(i=1) ind(x(i)) + Sigma(k)(i=1) ind(m(i)).en
dc.format.extent347-351-
dc.language.isoeng-
dc.publisherSpringer-
dc.sourceWeb of Science-
dc.titleFunctions and vector fields on C(CPn)-singular manifoldsen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationIGCE Unesp Univ, Sao Paulo, Brazil-
dc.description.affiliationUnespIGCE Unesp Univ, Sao Paulo, Brazil-
dc.identifier.doi10.1007/s11253-014-0935-6-
dc.identifier.wosWOS:000345186200003-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofUkrainian Mathematical Journal-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.