You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/116549
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTorres Mariani, Nathalia Cristina-
dc.contributor.authorCosta, Rosangela Camara da-
dc.contributor.authorGomes de Lima, Kassio Michell-
dc.contributor.authorNardini, Viviani-
dc.contributor.authorCunha Junior, Luis Carlos-
dc.contributor.authorAlmeida Teixeira, Gustavo Henrique de-
dc.date.accessioned2015-03-18T15:53:30Z-
dc.date.accessioned2016-10-25T20:25:03Z-
dc.date.available2015-03-18T15:53:30Z-
dc.date.available2016-10-25T20:25:03Z-
dc.date.issued2014-09-15-
dc.identifierhttp://dx.doi.org/10.1016/j.foodchem.2014.03.066-
dc.identifier.citationFood Chemistry. Oxford: Elsevier Sci Ltd, v. 159, p. 458-462, 2014.-
dc.identifier.issn0308-8146-
dc.identifier.urihttp://hdl.handle.net/11449/116549-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/116549-
dc.description.abstractThe aim of this study was to evaluate the potential of near-infrared reflectance spectroscopy (NIR) as a rapid and non-destructive method to determine soluble solid content (SSC) in intact jaboticaba [Myrciaria jaboticaba (Veil.) O. Berg] fruit. Multivariate calibration techniques were compared with pre-processed data and variable selection algorithms, such as partial least squares (PLS), interval partial least squares (iPLS), a genetic algorithm (GA), a successive projections algorithm (SPA) and nonlinear techniques (BP-ANN, back propagation of artificial neural networks; LS-SVM, least squares support vector machine) were applied to building the calibration models. The PLS model produced prediction accuracy (R-2 = 0.71, RMSEP = 1.33 degrees Brix, and RPD = 1.65) while the BP-ANN model (R-2 = 0.68, RMSEM = 1.20 degrees Brix, and RPD = 1.83) and LS-SVM models achieved lower performance metrics (R-2 = 0.44, RMSEP = 1.89 degrees Brix, and RPD = 1.16). This study was the first attempt to use NIR spectroscopy as a non-destructive method to determine SSC jaboticaba fruit. (C) 2014 Elsevier Ltd. All rights reserved.en
dc.description.sponsorshipGraduate Program in Chemistry (PPGQ) of UFRN-
dc.description.sponsorshipFAPERN-
dc.description.sponsorshipPro-Reitoria de Pesquisa da Universidade de Sao Paulo-
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
dc.format.extent458-462-
dc.language.isoeng-
dc.publisherElsevier B.V.-
dc.sourceWeb of Science-
dc.subjectNIR spectroscopyen
dc.subjectPLSen
dc.subjectBP-ANNen
dc.subjectLS-SVMen
dc.subjectVariables selectionen
dc.titlePredicting soluble solid content in intact jaboticaba [Myrciaria jaboticaba (Vell.) O. Berg] fruit using near-infrared spectroscopy and chemometricsen
dc.typeoutro-
dc.contributor.institutionUniversidade de São Paulo (USP)-
dc.contributor.institutionUniv Fed Rio Grande do Norte-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationUniv Sao Paulo, Fac Ciencias Farmacent Ribeirao Preto, Dept Anal Clin Toxicol & Bromatol, BR-14040903 Ribeirao Preto, SP, Brazil-
dc.description.affiliationUniv Fed Rio Grande do Norte, Grp Pesquisa Quim Biol & Quimiometria, Programa Posgrad Quim, BR-59072970 Natal, RN, Brazil-
dc.description.affiliationUniv Estadual Paulista UNESP, Fac Ciencias Agrorias & Vet, Dept Prod Vegetal, BR-14884900 Jaboticabal, SP, Brazil-
dc.description.affiliationUnespUniv Estadual Paulista UNESP, Fac Ciencias Agrorias & Vet, Dept Prod Vegetal, BR-14884900 Jaboticabal, SP, Brazil-
dc.description.sponsorshipIdFAPERN: 005/2012-
dc.description.sponsorshipIdPro-Reitoria de Pesquisa da Universidade de Sao Paulo10.1.25403.1.1-
dc.description.sponsorshipIdPro-Reitoria de Pesquisa da Universidade de Sao Paulo2011.1.6858.1.8-
dc.description.sponsorshipIdFAPESP: 08/51408-1-
dc.description.sponsorshipIdCNPq: 477386/2011-3-
dc.identifier.doi10.1016/j.foodchem.2014.03.066-
dc.identifier.wosWOS:000336109500065-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofFood Chemistry-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.