You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/116657
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSilvestre, Miriam Rodrigues-
dc.contributor.authorLing, Lee Luan-
dc.date.accessioned2015-03-18T15:53:40Z-
dc.date.accessioned2016-10-25T20:25:19Z-
dc.date.available2015-03-18T15:53:40Z-
dc.date.available2016-10-25T20:25:19Z-
dc.date.issued2014-10-01-
dc.identifierhttp://dx.doi.org/10.1016/j.measurement.2014.06.018-
dc.identifier.citationMeasurement. Oxford: Elsevier Sci Ltd, v. 56, p. 88-94, 2014.-
dc.identifier.issn0263-2241-
dc.identifier.urihttp://hdl.handle.net/11449/116657-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/116657-
dc.description.abstractThis article deals with classification problems involving unequal probabilities in each class and discusses metrics to systems that use multilayer perceptrons neural networks (MLP) for the task of classifying new patterns. In addition we propose three new pruning methods that were compared to other seven existing methods in the literature for MLP networks. All pruning algorithms presented in this paper have been modified by the authors to do pruning of neurons, in order to produce fully connected MLP networks but being small in its intermediary layer. Experiments were carried out involving the E. coli unbalanced classification problem and ten pruning methods. The proposed methods had obtained good results, actually, better results than another pruning methods previously defined at the MLP neural network area. (C) 2014 Elsevier Ltd. All rights reserved.en
dc.format.extent88-94-
dc.language.isoeng-
dc.publisherElsevier B.V.-
dc.sourceWeb of Science-
dc.subjectUnbalanced dataen
dc.subjectPruning methoden
dc.subjectMLP neural networken
dc.subjectProportional apparent error rateen
dc.titlePruning methods to MLP neural networks considering proportional apparent error rate for classification problems with unbalanced dataen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)-
dc.description.affiliationUniv Estadual Paulista, UNESP, Dept Estat, Fac Ciencias & Tecnol, BR-19060900 Presidente Prudente, SP, Brazil-
dc.description.affiliationUniv Estadual Campinas, UNICAMP, Dept Comunicacoes, Fac Engn Eletr & Computacao, BR-13083852 Campinas, SP, Brazil-
dc.description.affiliationUnespUniv Estadual Paulista, UNESP, Dept Estat, Fac Ciencias & Tecnol, BR-19060900 Presidente Prudente, SP, Brazil-
dc.identifier.doi10.1016/j.measurement.2014.06.018-
dc.identifier.wosWOS:000340896400010-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofMeasurement-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.