You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/116751
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBarriga, Gladys Dorotea Cacsire-
dc.contributor.authorLouzada, Francisco-
dc.date.accessioned2015-03-18T15:54:04Z-
dc.date.accessioned2016-10-25T20:27:58Z-
dc.date.available2015-03-18T15:54:04Z-
dc.date.available2016-10-25T20:27:58Z-
dc.date.issued2014-11-01-
dc.identifierhttp://dx.doi.org/10.1016/j.stamet.2013.11.003-
dc.identifier.citationStatistical Methodology. Amsterdam: Elsevier Science Bv, v. 21, p. 23-34, 2014.-
dc.identifier.issn1572-3127-
dc.identifier.urihttp://hdl.handle.net/11449/116751-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/116751-
dc.description.abstractIn this paper we propose the zero-inflated COM-Poisson distribution. We develop a Bayesian analysis for our model via on Markov chain Monte Carlo methods. We discuss regression modeling and model selection, as well as, develop case deletion influence diagnostics for the joint posterior distribution based on the psi-divergence, which has several divergence measures as particular cases, such as the Kullback-Leibler (K-L), J-distance, L-1 norm and chi(2)-square divergence measures. The performance of our approach is illustrated in an artificial dataset as well as in a real dataset on an apple cultivar experiment. (C) 2014 Elsevier B.V. All rights reserved.en
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
dc.format.extent23-34-
dc.language.isoeng-
dc.publisherElsevier B.V.-
dc.sourceWeb of Science-
dc.subjectBayesian inferenceen
dc.subjectCOM-Poisson distributionen
dc.subjectKullback-Leibler distanceen
dc.subjectZero-inflated modelsen
dc.titleThe zero-inflated Conway-Maxwell-Poisson distribution: Bayesian inference, regression modeling and influence diagnosticen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionUniversidade de São Paulo (USP)-
dc.description.affiliationSao Paulo State Univ, Fac Engn Bauru, Sao Paulo, Brazil-
dc.description.affiliationUniv Sao Paulo, Dept Appl Maths & Stat, BR-05508 Sao Paulo, Brazil-
dc.description.affiliationUnespSao Paulo State Univ, Fac Engn Bauru, Sao Paulo, Brazil-
dc.identifier.doi10.1016/j.stamet.2013.11.003-
dc.identifier.wosWOS:000340336800002-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofStatistical Methodology-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.