You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/116863
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFolador, Edson Luiz-
dc.contributor.authorHassan, Syed Shah-
dc.contributor.authorLemke, Ney-
dc.contributor.authorBarh, Debmalya-
dc.contributor.authorSilva, Artur-
dc.contributor.authorFerreira, Rafaela Salgado-
dc.contributor.authorAzevedo, Vasco-
dc.date.accessioned2015-03-18T15:54:17Z-
dc.date.accessioned2016-10-25T20:28:14Z-
dc.date.available2015-03-18T15:54:17Z-
dc.date.available2016-10-25T20:28:14Z-
dc.date.issued2014-11-01-
dc.identifierhttp://dx.doi.org/10.1039/c4ib00136b-
dc.identifier.citationIntegrative Biology. Cambridge: Royal Soc Chemistry, v. 6, n. 11, p. 1080-1087, 2014.-
dc.identifier.issn1757-9694-
dc.identifier.urihttp://hdl.handle.net/11449/116863-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/116863-
dc.description.abstractAutomated and efficient methods that map ortholog interactions from several organisms and public databases (pDB) are needed to identify new interactions in an organism of interest (interolog mapping). When computational methods are applied to predict interactions, it is important that these methods be validated and their efficiency proven. In this study, we compare six Blast+ metrics over three datasets to identify the best metric for protein protein interaction predictions. Using Blast+ to align the protein pairs, the ortholog interactions from DIP were mapped to String, Intact and Psibase pDBs. For each interaction mapped to each pDBs, we retrieved the alignment score, e-value, bitscore, similarity, identity and coverage. We evaluated these Blast+ values, and combinations thereof, with the Receiver Operating Characteristic (ROC) curves and computed the Area Under Curve (AUC). To validate these predictions, we used a subset of the Database of Interacting Proteins (DIP) composed of experimental interactions curated by the International Molecular Exchange (IMEx). The cut-off point for each metric/pDB was computed aiming to identify the best one that separates the true and false predicted interactions. In contrast to other methods that only compute the first Blast hit, we considered the first 20 hits, thus increasing the number of predicted interaction pairs. In addition, we identified the contribution of each individual pDB, as well as their combined contribution to the prediction. The best metric had an AUC of 0.96 for a single pDB and AUC of 0.93 for combined pDBs. Compared to other studies, with a cut-off point of 0.70 representing a specificity of 0.95 and a sensitivity of 0.90 for individual pDB, our method efficiently predicts protein protein interactions.en
dc.description.sponsorshipCENAPAD-MG-
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)-
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)-
dc.format.extent1080-1087-
dc.language.isoeng-
dc.publisherRoyal Soc Chemistry-
dc.sourceWeb of Science-
dc.titleAn improved interolog mapping-based computational prediction of protein protein interactions with increased network coverageen
dc.typeoutro-
dc.contributor.institutionUniversidade Federal de Minas Gerais (UFMG)-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionInst Integrat Om & Appl Biotechnol-
dc.contributor.institutionFed Univ Para-
dc.description.affiliationFed Univ Minas Gerais UFMG, Inst Ciencias Biol, Dept Gen Biol, Belo Horizonte, MG, Brazil-
dc.description.affiliationUniv Estadual Sao Paulo UNESP, Inst Biociencia, Lab Bioinformat & Computat Biofis, Sao Paulo, Brazil-
dc.description.affiliationInst Integrat Om & Appl Biotechnol, Ctr Genom & Appl Gene Technol, Purba Medinipur, W Bengal, India-
dc.description.affiliationFed Univ Para, Inst Ciencias Biol, BR-66059 Belem, Para, Brazil-
dc.description.affiliationFed Univ Minas Gerais UFMG, Dept Biochem & Immunol, Belo Horizonte, MG, Brazil-
dc.description.affiliationUnespUniv Estadual Sao Paulo UNESP, Inst Biociencia, Lab Bioinformat & Computat Biofis, Sao Paulo, Brazil-
dc.identifier.doi10.1039/c4ib00136b-
dc.identifier.wosWOS:000344203000008-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofIntegrative Biology-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.