You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/117074
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPisani, Rodrigo Jose-
dc.contributor.authorMizobe Nakamura, Rodrigo Yuji-
dc.contributor.authorRiedel, Paulina Setti-
dc.contributor.authorLopes Zimback, Celia Regina-
dc.contributor.authorFalcao, Alexandre Xavier-
dc.contributor.authorPapa, João Paulo-
dc.date.accessioned2015-03-18T15:55:07Z-
dc.date.accessioned2016-10-25T20:32:44Z-
dc.date.available2015-03-18T15:55:07Z-
dc.date.available2016-10-25T20:32:44Z-
dc.date.issued2014-10-01-
dc.identifierhttp://dx.doi.org/10.1109/TGRS.2013.2294762-
dc.identifier.citationIeee Transactions On Geoscience And Remote Sensing. Piscataway: Ieee-inst Electrical Electronics Engineers Inc, v. 52, n. 10, p. 6075-6085, 2014.-
dc.identifier.issn0196-2892-
dc.identifier.urihttp://hdl.handle.net/11449/117074-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/117074-
dc.description.abstractLand cover classification has been paramount in the last years. Since the amount of information acquired by satellite on-board imaging systems has increased, there is a need for automatic tools that can tackle such problem. Despite the fact that one can find several works in the literature, we propose a novel methodology for land cover classification by means of the optimum-path forest (OPF) framework, which has never been applied to this context up to date. Experiments were conducted in supervised and unsupervised situations against some state-of-the-art pattern recognition techniques, such as support vector machines, Bayesian classifier, k-means, and mean shift. We had shown that supervised OPF can outperform such approaches, being much faster than all. In regard to clustering techniques, all classifiers have achieved similar results.en
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
dc.description.sponsorshipPro Reitoria de Pesquisa da UNESP (Sao Paulo State University)-
dc.description.sponsorshipFundação para o Desenvolvimento da UNESP (FUNDUNESP)-
dc.format.extent6075-6085-
dc.language.isoeng-
dc.publisherIeee-inst Electrical Electronics Engineers Inc-
dc.sourceWeb of Science-
dc.subjectLand cover classificationen
dc.subjectoptimum-path forest (OPF)en
dc.subjectremote sensingen
dc.titleToward Satellite-Based Land Cover Classification Through Optimum-Path Foresten
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)-
dc.description.affiliationUnesp Univ Estadual Paulista, Inst Geosci & Exact Sci, BR-13506900 Rio Claro, Brazil-
dc.description.affiliationUnesp Univ Estadual Paulista, Dept Comp Sci, BR-17040 Bauru, Brazil-
dc.description.affiliationUnesp Univ Estadual Paulista, Sch Agron Sci, BR-18618970 Botucatu, SP, Brazil-
dc.description.affiliationUnicamp Univ Campinas, Inst Comp, BR-13083859 Campinas, SP, Brazil-
dc.description.affiliationUnespUnesp Univ Estadual Paulista, Inst Geosci & Exact Sci, BR-13506900 Rio Claro, Brazil-
dc.description.affiliationUnespUnesp Univ Estadual Paulista, Dept Comp Sci, BR-17040 Bauru, Brazil-
dc.description.affiliationUnespUnesp Univ Estadual Paulista, Sch Agron Sci, BR-18618970 Botucatu, SP, Brazil-
dc.description.sponsorshipIdFAPESP: 09/16206-1-
dc.description.sponsorshipIdFAPESP: 10/11676-7-
dc.description.sponsorshipIdCNPq: 303182/2011-3-
dc.description.sponsorshipIdCNPq: 303673/2010-9-
dc.identifier.doi10.1109/TGRS.2013.2294762-
dc.identifier.wosWOS:000337173200007-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofIeee Transactions On Geoscience And Remote Sensing-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.