Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/117077
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Candolo, C. | - |
dc.contributor.author | Davison, A. C. | - |
dc.contributor.author | Demetrio, CGB | - |
dc.date.accessioned | 2015-03-18T15:55:07Z | - |
dc.date.accessioned | 2016-10-25T20:32:44Z | - |
dc.date.available | 2015-03-18T15:55:07Z | - |
dc.date.available | 2016-10-25T20:32:44Z | - |
dc.date.issued | 2003-01-01 | - |
dc.identifier | http://dx.doi.org/10.1111/1467-9884.00349 | - |
dc.identifier.citation | Journal Of The Royal Statistical Society Series D-the Statistician. Oxford: Blackwell Publ Ltd, v. 52, p. 165-177, 2003. | - |
dc.identifier.issn | 0039-0526 | - |
dc.identifier.uri | http://hdl.handle.net/11449/117077 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/117077 | - |
dc.description.abstract | We consider model selection uncertainty in linear regression. We study theoretically and by simulation the approach of Buckland and co-workers, who proposed estimating a parameter common to all models under study by taking a weighted average over the models, using weights obtained from information criteria or the bootstrap. This approach is compared with the usual approach in which the 'best' model is used, and with Bayesian model averaging. The weighted predictor behaves similarly to model averaging, with generally more realistic mean-squared errors than the usual model-selection-based estimator. | en |
dc.format.extent | 165-177 | - |
dc.language.iso | eng | - |
dc.publisher | Blackwell Publ Ltd | - |
dc.source | Web of Science | - |
dc.subject | akaike information criterion | en |
dc.subject | Bayes information criterion | en |
dc.subject | bootstrap | en |
dc.subject | model averaging | en |
dc.subject | model uncertainty | en |
dc.subject | prediction | en |
dc.title | A note on model uncertainty in linear regression | en |
dc.type | outro | - |
dc.contributor.institution | Swiss Fed Inst Technol | - |
dc.contributor.institution | Universidade Federal de São Carlos (UFSCar) | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.description.affiliation | Swiss Fed Inst Technol, Math Inst, CH-1015 Lausanne, Switzerland | - |
dc.description.affiliation | Univ Fed Sao Carlos, BR-13560 Sao Carlos, SP, Brazil | - |
dc.description.affiliation | State Univ Sao Paulo, Piracicaba, Brazil | - |
dc.description.affiliationUnesp | State Univ Sao Paulo, Piracicaba, Brazil | - |
dc.identifier.doi | 10.1111/1467-9884.00349 | - |
dc.identifier.wos | WOS:000183546800003 | - |
dc.rights.accessRights | Acesso restrito | - |
dc.relation.ispartof | Journal Of The Royal Statistical Society Series D-the Statistician | - |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.