You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/117077
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCandolo, C.-
dc.contributor.authorDavison, A. C.-
dc.contributor.authorDemetrio, CGB-
dc.date.accessioned2015-03-18T15:55:07Z-
dc.date.accessioned2016-10-25T20:32:44Z-
dc.date.available2015-03-18T15:55:07Z-
dc.date.available2016-10-25T20:32:44Z-
dc.date.issued2003-01-01-
dc.identifierhttp://dx.doi.org/10.1111/1467-9884.00349-
dc.identifier.citationJournal Of The Royal Statistical Society Series D-the Statistician. Oxford: Blackwell Publ Ltd, v. 52, p. 165-177, 2003.-
dc.identifier.issn0039-0526-
dc.identifier.urihttp://hdl.handle.net/11449/117077-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/117077-
dc.description.abstractWe consider model selection uncertainty in linear regression. We study theoretically and by simulation the approach of Buckland and co-workers, who proposed estimating a parameter common to all models under study by taking a weighted average over the models, using weights obtained from information criteria or the bootstrap. This approach is compared with the usual approach in which the 'best' model is used, and with Bayesian model averaging. The weighted predictor behaves similarly to model averaging, with generally more realistic mean-squared errors than the usual model-selection-based estimator.en
dc.format.extent165-177-
dc.language.isoeng-
dc.publisherBlackwell Publ Ltd-
dc.sourceWeb of Science-
dc.subjectakaike information criterionen
dc.subjectBayes information criterionen
dc.subjectbootstrapen
dc.subjectmodel averagingen
dc.subjectmodel uncertaintyen
dc.subjectpredictionen
dc.titleA note on model uncertainty in linear regressionen
dc.typeoutro-
dc.contributor.institutionSwiss Fed Inst Technol-
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationSwiss Fed Inst Technol, Math Inst, CH-1015 Lausanne, Switzerland-
dc.description.affiliationUniv Fed Sao Carlos, BR-13560 Sao Carlos, SP, Brazil-
dc.description.affiliationState Univ Sao Paulo, Piracicaba, Brazil-
dc.description.affiliationUnespState Univ Sao Paulo, Piracicaba, Brazil-
dc.identifier.doi10.1111/1467-9884.00349-
dc.identifier.wosWOS:000183546800003-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofJournal Of The Royal Statistical Society Series D-the Statistician-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.