You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/117220
Full metadata record
DC FieldValueLanguage
dc.contributor.authorScheicher, Klaus-
dc.contributor.authorSurer, Paul-
dc.contributor.authorThuswaldner, Joerg M.-
dc.contributor.authorVan de Woestijne, Christiaan E.-
dc.date.accessioned2015-03-18T15:55:34Z-
dc.date.accessioned2016-10-25T20:34:50Z-
dc.date.available2015-03-18T15:55:34Z-
dc.date.available2016-10-25T20:34:50Z-
dc.date.issued2014-09-01-
dc.identifierhttp://dx.doi.org/10.1142/S1793042114500389-
dc.identifier.citationInternational Journal Of Number Theory. Singapore: World Scientific Publ Co Pte Ltd, v. 10, n. 6, p. 1459-1483, 2014.-
dc.identifier.issn1793-0421-
dc.identifier.urihttp://hdl.handle.net/11449/117220-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/117220-
dc.description.abstractLet epsilon be a commutative ring with identity and P is an element of epsilon[x] be a polynomial. In the present paper we consider digit representations in the residue class ring epsilon[x]/(P). In particular, we are interested in the question whether each A is an element of epsilon[x]/(P) can be represented modulo P in the form e(0)+ e(1)x + ... + e(h)x(h), where the e(i) is an element of epsilon[x]/(P) are taken from a fixed finite set of digits. This general concept generalizes both canonical number systems and digit systems over finite fields. Due to the fact that we do not assume that 0 is an element of the digit set and that P need not be monic, several new phenomena occur in this context.en
dc.description.sponsorshipAustrian Science Foundation (FWF)-
dc.description.sponsorshipnational research network "Analytic combinatorics and probabilistic number theory"-
dc.format.extent1459-1483-
dc.language.isoeng-
dc.publisherWorld Scientific Publ Co Pte Ltd-
dc.sourceWeb of Science-
dc.subjectCanonical number systemsen
dc.subjectshift radix systemsen
dc.subjectdigit systemsen
dc.titleDigit systems over commutative ringsen
dc.typeoutro-
dc.contributor.institutionUniv Nat Resources & Appl Life Sci-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionUniv Leoben-
dc.description.affiliationUniv Nat Resources & Appl Life Sci, Inst Math, A-1180 Vienna, Austria-
dc.description.affiliationUniv Estadual Paulista UNESP, Dept Matemat, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil-
dc.description.affiliationUniv Leoben, Chair Math & Stat, A-8700 Leoben, Austria-
dc.description.affiliationUnespUniv Estadual Paulista UNESP, Dept Matemat, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil-
dc.description.sponsorshipIdAustrian Science Foundation (FWF)S9606-
dc.description.sponsorshipIdAustrian Science Foundation (FWF)S9610-
dc.description.sponsorshipIdnational research network Analytic combinatorics and probabilistic number theoryFWF-S96-
dc.identifier.doi10.1142/S1793042114500389-
dc.identifier.wosWOS:000341012700008-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofInternational Journal Of Number Theory-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.