Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/117220
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Scheicher, Klaus | - |
dc.contributor.author | Surer, Paul | - |
dc.contributor.author | Thuswaldner, Joerg M. | - |
dc.contributor.author | Van de Woestijne, Christiaan E. | - |
dc.date.accessioned | 2015-03-18T15:55:34Z | - |
dc.date.accessioned | 2016-10-25T20:34:50Z | - |
dc.date.available | 2015-03-18T15:55:34Z | - |
dc.date.available | 2016-10-25T20:34:50Z | - |
dc.date.issued | 2014-09-01 | - |
dc.identifier | http://dx.doi.org/10.1142/S1793042114500389 | - |
dc.identifier.citation | International Journal Of Number Theory. Singapore: World Scientific Publ Co Pte Ltd, v. 10, n. 6, p. 1459-1483, 2014. | - |
dc.identifier.issn | 1793-0421 | - |
dc.identifier.uri | http://hdl.handle.net/11449/117220 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/117220 | - |
dc.description.abstract | Let epsilon be a commutative ring with identity and P is an element of epsilon[x] be a polynomial. In the present paper we consider digit representations in the residue class ring epsilon[x]/(P). In particular, we are interested in the question whether each A is an element of epsilon[x]/(P) can be represented modulo P in the form e(0)+ e(1)x + ... + e(h)x(h), where the e(i) is an element of epsilon[x]/(P) are taken from a fixed finite set of digits. This general concept generalizes both canonical number systems and digit systems over finite fields. Due to the fact that we do not assume that 0 is an element of the digit set and that P need not be monic, several new phenomena occur in this context. | en |
dc.description.sponsorship | Austrian Science Foundation (FWF) | - |
dc.description.sponsorship | national research network "Analytic combinatorics and probabilistic number theory" | - |
dc.format.extent | 1459-1483 | - |
dc.language.iso | eng | - |
dc.publisher | World Scientific Publ Co Pte Ltd | - |
dc.source | Web of Science | - |
dc.subject | Canonical number systems | en |
dc.subject | shift radix systems | en |
dc.subject | digit systems | en |
dc.title | Digit systems over commutative rings | en |
dc.type | outro | - |
dc.contributor.institution | Univ Nat Resources & Appl Life Sci | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.contributor.institution | Univ Leoben | - |
dc.description.affiliation | Univ Nat Resources & Appl Life Sci, Inst Math, A-1180 Vienna, Austria | - |
dc.description.affiliation | Univ Estadual Paulista UNESP, Dept Matemat, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil | - |
dc.description.affiliation | Univ Leoben, Chair Math & Stat, A-8700 Leoben, Austria | - |
dc.description.affiliationUnesp | Univ Estadual Paulista UNESP, Dept Matemat, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil | - |
dc.description.sponsorshipId | Austrian Science Foundation (FWF)S9606 | - |
dc.description.sponsorshipId | Austrian Science Foundation (FWF)S9610 | - |
dc.description.sponsorshipId | national research network Analytic combinatorics and probabilistic number theoryFWF-S96 | - |
dc.identifier.doi | 10.1142/S1793042114500389 | - |
dc.identifier.wos | WOS:000341012700008 | - |
dc.rights.accessRights | Acesso restrito | - |
dc.relation.ispartof | International Journal Of Number Theory | - |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.