You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/117235
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMarucci, Evandro A.-
dc.contributor.authorZafalon, Geraldo F. D.-
dc.contributor.authorMomente, Julio C.-
dc.contributor.authorNeves, Leandro A.-
dc.contributor.authorValencio, Carlo R.-
dc.contributor.authorPinto, Alex R.-
dc.contributor.authorCansian, Adriano M.-
dc.contributor.authorSouza, Rogeria C. G. de-
dc.contributor.authorYang Shiyou-
dc.contributor.authorMachado, Jose M.-
dc.date.accessioned2015-03-18T15:55:36Z-
dc.date.accessioned2016-10-25T20:34:52Z-
dc.date.available2015-03-18T15:55:36Z-
dc.date.available2016-10-25T20:34:52Z-
dc.date.issued2014-01-01-
dc.identifierhttp://dx.doi.org/10.1155/2014/563016-
dc.identifier.citationBiomed Research International. New York: Hindawi Publishing Corporation, 6 p., 2014.-
dc.identifier.issn2314-6133-
dc.identifier.urihttp://hdl.handle.net/11449/117235-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/117235-
dc.description.abstractWith the advance of genomic researches, the number of sequences involved in comparative methods has grown immensely. Among them, there are methods for similarities calculation, which are used by many bioinformatics applications. Due the huge amount of data, the union of low complexity methods with the use of parallel computing is becoming desirable. The k-mers counting is a very efficient method with good biological results. In this work, the development of a parallel algorithm for multiple sequence similarities calculation using the k-mers counting method is proposed. Tests show that the algorithm presents a very good scalability and a nearly linear speedup. For 14 nodes was obtained 12x speedup. This algorithm can be used in the parallelization of some multiple sequence alignment tools, such as MAFFT and MUSCLE.en
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
dc.format.extent6-
dc.language.isoeng-
dc.publisherHindawi Publishing Corporation-
dc.sourceWeb of Science-
dc.titleAn Efficient Parallel Algorithm for Multiple Sequence Similarities Calculation Using a Low Complexity Methoden
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionUniversidade Federal de Santa Catarina (UFSC)-
dc.contributor.institutionZhejiang Univ-
dc.description.affiliationSao Paulo State Univ, Dept Comp Sci & Stat, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil-
dc.description.affiliationUniv Fed Santa Catarina, Dept Control Engn & Automat, BR-89065300 Blumenau, SC, Brazil-
dc.description.affiliationZhejiang Univ, Coll Elect Engn, Hangzhou 310027, Zhejiang, Peoples R China-
dc.description.affiliationUnespSao Paulo State Univ, Dept Comp Sci & Stat, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil-
dc.description.sponsorshipIdFAPESP: 06/59592-0-
dc.identifier.doi10.1155/2014/563016-
dc.identifier.wosWOS:000340143200001-
dc.rights.accessRightsAcesso aberto-
dc.identifier.fileWOS000340143200001.pdf-
dc.identifier.fileWOS000340143200001.epub-
dc.relation.ispartofBiomed Research International-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.