Você está no menu de acessibilidade

Utilize este identificador para citar ou criar um link para este item: http://acervodigital.unesp.br/handle/11449/117299
Título: 
Proteins, Pathogens, and Failure at the Composite-Tooth Interface
Autor(es): 
Instituição: 
  • Univ Kansas
  • Universidade Estadual Paulista (UNESP)
ISSN: 
0022-0345
Financiador: 
National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
Número do financiamento: 
  • National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MarylandR01DE14392
  • National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MarylandR01DE14392-08S1
  • National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MarylandR01DE022054
Resumo: 
In the United States, composites accounted for nearly 70% of the 173.2 million composite and amalgam restorations placed in 2006 (Kingman et al., 2012), and it is likely that the use of composite will continue to increase as dentists phase out dental amalgam. This trend is not, however, without consequences. The failure rate of composite restorations is double that of amalgam (Ferracane, 2013). Composite restorations accumulate more biofilm, experience more secondary decay, and require more frequent replacement. In vivo biodegradation of the adhesive bond at the composite-tooth interface is a major contributor to the cascade of events leading to restoration failure. Binding by proteins, particularly gp340, from the salivary pellicle leads to biofilm attachment, which accelerates degradation of the interfacial bond and demineralization of the tooth by recruiting the pioneer bacterium Streptococcus mutans to the surface. Bacterial production of lactic acid lowers the pH of the oral microenvironment, erodes hydroxyapatite in enamel and dentin, and promotes hydrolysis of the adhesive. Secreted esterases further hydrolyze the adhesive polymer, exposing the soft underlying collagenous dentinal matrix and allowing further infiltration by the pathogenic biofilm. Manifold approaches are being pursued to increase the longevity of composite dental restorations based on the major contributing factors responsible for degradation. The key material and biological components and the interactions involved in the destructive processes, including recent advances in understanding the structural and molecular basis of biofilm recruitment, are described in this review. Innovative strategies to mitigate these pathogenic effects and slow deterioration are discussed.
Data de publicação: 
1-Dez-2014
Citação: 
Journal Of Dental Research. Thousand Oaks: Sage Publications Inc, v. 93, n. 12, p. 1243-1249, 2014.
Duração: 
1243-1249
Publicador: 
Sage Publications Inc
Palavras-chaves: 
  • dentin bonding agents
  • methacrylate
  • gp340
  • Streptococcus mutans
  • esterases
  • biofilm
Fonte: 
http://dx.doi.org/10.1177/0022034514550039
Endereço permanente: 
Direitos de acesso: 
Acesso restrito
Tipo: 
outro
Fonte completa:
http://repositorio.unesp.br/handle/11449/117299
Aparece nas coleções:Artigos, TCCs, Teses e Dissertações da Unesp

Não há nenhum arquivo associado com este item.
 

Itens do Acervo digital da UNESP são protegidos por direitos autorais reservados a menos que seja expresso o contrário.