You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/117646
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAfonso, Luis Cláudio Súgi-
dc.contributor.authorPapa, João Paulo-
dc.contributor.authorPapa, Luciene Patrici-
dc.contributor.authorMarana, Aparecido Nilceu-
dc.contributor.authorRocha, Anderson-
dc.contributor.author-
dc.date.accessioned2015-03-18T15:56:37Z-
dc.date.accessioned2016-10-25T20:35:51Z-
dc.date.available2015-03-18T15:56:37Z-
dc.date.available2016-10-25T20:35:51Z-
dc.date.issued2012-01-01-
dc.identifierhttp://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6467255-
dc.identifier.citation2012 Ieee International Conference On Image Processing (icip 2012). New York: Ieee, p. 1897-1900, 2012.-
dc.identifier.issn1522-4880-
dc.identifier.urihttp://hdl.handle.net/11449/117646-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/117646-
dc.description.abstractImage categorization by means of bag of visual words has received increasing attention by the image processing and vision communities in the last years. In these approaches, each image is represented by invariant points of interest which are mapped to a Hilbert Space representing a visual dictionary which aims at comprising the most discriminative features in a set of images. Notwithstanding, the main problem of such approaches is to find a compact and representative dictionary. Finding such representative dictionary automatically with no user intervention is an even more difficult task. In this paper, we propose a method to automatically find such dictionary by employing a recent developed graph-based clustering algorithm called Optimum-Path Forest, which does not make any assumption about the visual dictionary's size and is more efficient and effective than the state-of-the-art techniques used for dictionary generation.en
dc.format.extent1897-1900-
dc.language.isoeng-
dc.publisherIeee-
dc.sourceWeb of Science-
dc.subjectOptimum-Path Foresten
dc.subjectClustering algorithmsen
dc.subjectBag-of-visual Wordsen
dc.subjectAutomatic Visual Word Dictionary Calculationen
dc.titleAutomatic visual dictionary generation through optimum-path forest clusteringautomatic visual dictionary generation through optimum-path forest clusteringen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationUNESP Univ Estadual Paulista, Dept Comp, Jaboticabal, Brazil-
dc.description.affiliationUnespUNESP Univ Estadual Paulista, Dept Comp, Jaboticabal, Brazil-
dc.identifier.wosWOS:000319334901236-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartof2012 Ieee International Conference On Image Processing (icip 2012)-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.