Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/117661
- Title:
- Inequalities for zeros of Jacobi polynomials via Sturm's theorem: Gautschi's conjectures
- Universidade Estadual de Campinas (UNICAMP)
- Universidade Estadual Paulista (UNESP)
- 1017-1398
- Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
- Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
- Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
- Let x(n,k)((alpha,beta)), k = 1, ... , n, be the zeros of Jacobi polynomials P-n((alpha,beta)) (x) arranged in decreasing order on (-1, 1), where alpha, beta > -1, and theta((alpha,beta))(n,k) = arccos x(n,k)((alpha,beta)). Gautschi, in a series of recent papers, conjectured that the inequalitiesn theta((alpha,beta))(n,k) < (n + 1)theta((alpha,beta))(n+1,k)and(n + (alpha + beta + 3)/2)theta((alpha,beta))(n+1,k) < (n + (alpha + beta + 1)/2)theta((alpha,beta))(n,k),hold for all n >= 1, k = 1, ... , n, and certain values of the parameters alpha and beta. We establish these conjectures for large domains of the (alpha, beta)-plane by using a Sturmian approach.
- 1-Nov-2014
- Numerical Algorithms. Dordrecht: Springer, v. 67, n. 3, p. 549-563, 2014.
- 549-563
- Springer
- Gautschi's conjectures
- Jacobi polynomials
- Zeros
- Inequalities
- http://link.springer.com/article/10.1007%2Fs11075-013-9807-7
- Acesso restrito
- outro
- http://repositorio.unesp.br/handle/11449/117661
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.