You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/117661
Title: 
Inequalities for zeros of Jacobi polynomials via Sturm's theorem: Gautschi's conjectures
Author(s): 
Institution: 
  • Universidade Estadual de Campinas (UNICAMP)
  • Universidade Estadual Paulista (UNESP)
ISSN: 
1017-1398
Sponsorship: 
  • Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
  • Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
  • Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Abstract: 
Let x(n,k)((alpha,beta)), k = 1, ... , n, be the zeros of Jacobi polynomials P-n((alpha,beta)) (x) arranged in decreasing order on (-1, 1), where alpha, beta > -1, and theta((alpha,beta))(n,k) = arccos x(n,k)((alpha,beta)). Gautschi, in a series of recent papers, conjectured that the inequalitiesn theta((alpha,beta))(n,k) < (n + 1)theta((alpha,beta))(n+1,k)and(n + (alpha + beta + 3)/2)theta((alpha,beta))(n+1,k) < (n + (alpha + beta + 1)/2)theta((alpha,beta))(n,k),hold for all n >= 1, k = 1, ... , n, and certain values of the parameters alpha and beta. We establish these conjectures for large domains of the (alpha, beta)-plane by using a Sturmian approach.
Issue Date: 
1-Nov-2014
Citation: 
Numerical Algorithms. Dordrecht: Springer, v. 67, n. 3, p. 549-563, 2014.
Time Duration: 
549-563
Publisher: 
Springer
Keywords: 
  • Gautschi's conjectures
  • Jacobi polynomials
  • Zeros
  • Inequalities
Source: 
http://link.springer.com/article/10.1007%2Fs11075-013-9807-7
URI: 
Access Rights: 
Acesso restrito
Type: 
outro
Source:
http://repositorio.unesp.br/handle/11449/117661
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.