Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/117661
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lun, Yen Chi | - |
dc.contributor.author | Rafaeli, Fernando Rodrigo | - |
dc.date.accessioned | 2015-03-18T15:56:41Z | - |
dc.date.accessioned | 2016-10-25T20:35:53Z | - |
dc.date.available | 2015-03-18T15:56:41Z | - |
dc.date.available | 2016-10-25T20:35:53Z | - |
dc.date.issued | 2014-11-01 | - |
dc.identifier | http://link.springer.com/article/10.1007%2Fs11075-013-9807-7 | - |
dc.identifier.citation | Numerical Algorithms. Dordrecht: Springer, v. 67, n. 3, p. 549-563, 2014. | - |
dc.identifier.issn | 1017-1398 | - |
dc.identifier.uri | http://hdl.handle.net/11449/117661 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/117661 | - |
dc.description.abstract | Let x(n,k)((alpha,beta)), k = 1, ... , n, be the zeros of Jacobi polynomials P-n((alpha,beta)) (x) arranged in decreasing order on (-1, 1), where alpha, beta > -1, and theta((alpha,beta))(n,k) = arccos x(n,k)((alpha,beta)). Gautschi, in a series of recent papers, conjectured that the inequalitiesn theta((alpha,beta))(n,k) < (n + 1)theta((alpha,beta))(n+1,k)and(n + (alpha + beta + 3)/2)theta((alpha,beta))(n+1,k) < (n + (alpha + beta + 1)/2)theta((alpha,beta))(n,k),hold for all n >= 1, k = 1, ... , n, and certain values of the parameters alpha and beta. We establish these conjectures for large domains of the (alpha, beta)-plane by using a Sturmian approach. | en |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | - |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | - |
dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | - |
dc.format.extent | 549-563 | - |
dc.language.iso | eng | - |
dc.publisher | Springer | - |
dc.source | Web of Science | - |
dc.subject | Gautschi's conjectures | en |
dc.subject | Jacobi polynomials | en |
dc.subject | Zeros | en |
dc.subject | Inequalities | en |
dc.title | Inequalities for zeros of Jacobi polynomials via Sturm's theorem: Gautschi's conjectures | en |
dc.type | outro | - |
dc.contributor.institution | Universidade Estadual de Campinas (UNICAMP) | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.description.affiliation | Univ Estadual Campinas UNICAMP, Sao Paulo, Brazil | - |
dc.description.affiliation | Univ Estadual Paulista UNESP, Sao Paulo, Brazil | - |
dc.description.affiliationUnesp | Univ Estadual Paulista UNESP, Sao Paulo, Brazil | - |
dc.identifier.doi | 10.1007/s11075-013-9807-7 | - |
dc.identifier.wos | WOS:000344598600005 | - |
dc.rights.accessRights | Acesso restrito | - |
dc.relation.ispartof | Numerical Algorithms | - |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.