You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/117687
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMoraes, Jaime R. de-
dc.contributor.authorSilva, Paulo R. da-
dc.date.accessioned2015-03-18T15:56:46Z-
dc.date.accessioned2016-10-25T20:35:58Z-
dc.date.available2015-03-18T15:56:46Z-
dc.date.available2016-10-25T20:35:58Z-
dc.date.issued2014-10-01-
dc.identifierhttp://projecteuclid.org/euclid.bbms/1414091008-
dc.identifier.citationBulletin Of The Belgian Mathematical Society-simon Stevin. Brussels: Belgian Mathematical Soc Triomphe, v. 21, n. 4, p. 653-684, 2014.-
dc.identifier.issn1370-1444-
dc.identifier.urihttp://hdl.handle.net/11449/117687-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/117687-
dc.description.abstractIn this paper we study piecewise linear (PWL) vector fields F(x,y) = { F-+(x,F-y) where x= (x,y) is an element of R-2, F+ (x) = A-Fx b(+) and F- (x) = +, A+ = (at) and A = (a7) are (2 x 2) constant matrices, b+ = (biF,11) E R2 1.1 and b- = (111-, b2-) E IR2 are constant vectors in R2. We suppose that the equilibrium points are saddle or focus in each half-plane. We establish a correspondence between the PWL vector fields and vectors formed by some of the following parameters: sets on E (crossing, sliding or escaping), kind of equilibrium (real or virtual), intersection of manifolds with E, stability and orientation of the focus. Such vectors are called configurations. We reduce the number of configurations by an equivalent relation. Besides, we analyze for which configurations the corresponding PWL vector fields can have or not closed sliding poly-trajectories.en
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)-
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
dc.format.extent653-684-
dc.language.isoeng-
dc.publisherBelgian Mathematical Soc Triomphe-
dc.sourceWeb of Science-
dc.subjectPiecewise linear systemsen
dc.subjectvector fieldsen
dc.subjectpoly-trajectoriesen
dc.titlePiecewise Linear Systems with Closed Sliding Poly-Trajectoriesen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationUNESP, IBILCE, Dept Matemat, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil-
dc.description.affiliationUnespUNESP, IBILCE, Dept Matemat, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil-
dc.description.sponsorshipIdFAPESP: 10/17956-1-
dc.identifier.wosWOS:000345951800005-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofBulletin Of The Belgian Mathematical Society-simon Stevin-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.