You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/122477
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAraújo, Gustavo Medeiros de-
dc.contributor.authorPinto, Alex Sandro Roschildt-
dc.contributor.authorKaiser, Jörg-
dc.contributor.authorBecker, Leandro Buss-
dc.date.accessioned2015-04-27T11:55:47Z-
dc.date.accessioned2016-10-25T20:46:23Z-
dc.date.available2015-04-27T11:55:47Z-
dc.date.available2016-10-25T20:46:23Z-
dc.date.issued2012-
dc.identifierhttp://www.sciencedirect.com/science/article/pii/S1877050912005133-
dc.identifier.citationProcedia Computer Science, v. 10, p. 1100-1105, 2012.-
dc.identifier.issn1877-0509-
dc.identifier.urihttp://hdl.handle.net/11449/122477-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/122477-
dc.description.abstractConnectivity is the basic factor for the proper operation of any wireless network. In a mobile wireless sensor network it is a challenge for applications and protocols to deal with connectivity problems, as links might get up and down frequently. In these scenarios, having knowledge of the node remaining connectivity time could both improve the performance of the protocols (e.g. handoff mechanisms) and save possible scarce nodes resources (CPU, bandwidth, and energy) by preventing unfruitful transmissions. The current paper provides a solution called Genetic Machine Learning Algorithm (GMLA) to forecast the remainder connectivity time in mobile environments. It consists in combining Classifier Systems with a Markov chain model of the RF link quality. The main advantage of using an evolutionary approach is that the Markov model parameters can be discovered on-the-fly, making it possible to cope with unknown environments and mobility patterns. Simulation results show that the proposal is a very suitable solution, as it overcomes the performance obtained by similar approaches.en
dc.format.extent1100-1105-
dc.language.isoeng-
dc.sourceCurrículo Lattes-
dc.subjectWireless sensor networksen
dc.subjectMobilityen
dc.subjectConnectivity predictionen
dc.subjectGenetic algorithmen
dc.subjectClassifier Systemsen
dc.titleAn evolutionary approach to improve connectivity prediction in mobile wireless sensor networksen
dc.typeoutro-
dc.contributor.institutionUniversidade Federal de Santa Catarina (UFSC)-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionOtto-Von-Guericke-Univesitat Magdeburg-
dc.description.affiliationUnespUniversidade Estadual Paulista Júlio de Mesquita Filho, Departamento de Ciência da Computação e Estatística, Instituto de Biociências Letras e Ciências Exatas de São José do Rio Preto-
dc.identifier.doihttp://dx.doi.org/10.1016/j.procs.2012.06.156-
dc.rights.accessRightsAcesso aberto-
dc.identifier.fileISSN1877-0509-2012-10-1100-1105.pdf-
dc.relation.ispartofProcedia Computer Science-
dc.identifier.lattes0555619693238543-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.