You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/122652
Full metadata record
DC FieldValueLanguage
dc.contributor.authorShah, Tariq-
dc.contributor.authorQamar, Attiq-
dc.contributor.authorAndrade, Antonio Aparecido de-
dc.date.accessioned2015-04-27T11:55:56Z-
dc.date.accessioned2016-10-25T20:46:46Z-
dc.date.available2015-04-27T11:55:56Z-
dc.date.available2016-10-25T20:46:46Z-
dc.date.issued2012-
dc.identifierhttp://www.iaumath.com/content/6/1/51-
dc.identifier.citationMathematical Sciences, v. 6, p. 1-14, 2012.-
dc.identifier.issn2251-7456-
dc.identifier.urihttp://hdl.handle.net/11449/122652-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/122652-
dc.description.abstractIn this paper, we present a new construction and decoding of BCH codes over certain rings. Thus, for a nonnegative integer t, let A0 ⊂ A1 ⊂···⊂ At−1 ⊂ At be a chain of unitary commutative rings, where each Ai is constructed by the direct product of appropriate Galois rings, and its projection to the fields is K0 ⊂ K1 ⊂···⊂ Kt−1 ⊂ Kt (another chain of unitary commutative rings), where each Ki is made by the direct product of corresponding residue fields of given Galois rings. Also, A∗ i and K∗ i are the groups of units of Ai and Ki, respectively. This correspondence presents a construction technique of generator polynomials of the sequence of Bose, Chaudhuri, and Hocquenghem (BCH) codes possessing entries from A∗ i and K∗ i for each i, where 0 ≤ i ≤ t. By the construction of BCH codes, we are confined to get the best code rate and error correction capability; however, the proposed contribution offers a choice to opt a worthy BCH code concerning code rate and error correction capability. In the second phase, we extend the modified Berlekamp-Massey algorithm for the above chains of unitary commutative local rings in such a way that the error will be corrected of the sequences of codewords from the sequences of BCH codes at once. This process is not much different than the original one, but it deals a sequence of codewords from the sequence of codes over the chain of Galois rings.en
dc.format.extent1-14-
dc.language.isoeng-
dc.sourceCurrículo Lattes-
dc.subjectUnits of a Galois ringen
dc.subjectBCH codeen
dc.subjectMcCoy ranken
dc.subjectDirect product of Galois ringsen
dc.titleConstruction and decoding of BCH codes over chain of commutative ringsen
dc.typeoutro-
dc.contributor.institutionQuaid-i-Azam University-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationUniversidade Estadual Paulista Júlio de Mesquita Filho, Instituto de Biociencias, Letras e Ciencias Exatas de Sao Jose do Rio Preto, Sao Jose do Rio Preto, RUA CRISTOVAO COLOMBO 2265 - DEPARTAMENTO DE MATEMATICA, JARDIM NAZARETH, CEP 15054-000, SP, Brasil-
dc.description.affiliationUnespUniversidade Estadual Paulista Júlio de Mesquita Filho, Instituto de Biociencias, Letras e Ciencias Exatas de Sao Jose do Rio Preto, Sao Jose do Rio Preto, RUA CRISTOVAO COLOMBO 2265 - DEPARTAMENTO DE MATEMATICA, JARDIM NAZARETH, CEP 15054-000, SP, Brasil-
dc.identifier.doihttp://dx.doi.org/10.1186/2251-7456-6-51-
dc.rights.accessRightsAcesso aberto-
dc.identifier.fileISSN2251-7456-2012-06-01-14.pdf-
dc.relation.ispartofMathematical Sciences-
dc.identifier.lattes8940498347481982-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.