You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/122674
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAgafonov, Serguei-
dc.date.accessioned2015-04-27T11:55:57Z-
dc.date.accessioned2016-10-25T20:46:49Z-
dc.date.available2015-04-27T11:55:57Z-
dc.date.available2016-10-25T20:46:49Z-
dc.date.issued2014-
dc.identifierhttp://dx.doi.org/10.1007/s10711-014-9960-8-
dc.identifier.citationGeometriae Dedicata, v. 176, n. 1, p. 87-115, 2014.-
dc.identifier.issn1572-9168-
dc.identifier.urihttp://hdl.handle.net/11449/122674-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/122674-
dc.description.abstractImplicit ODE, cubic in derivative, generically has no infinitesimal symmetries even at regular points with distinct roots. Cartan showed that at regular points, ODEs with hexagonal 3-web of solutions have symmetry algebras of the maximal possible dimension 3. At singular points such a web can lose all its symmetries. In this paper we study hexagonal 3-webs having at least one infinitesimal symmetry at singular points. In particular, we establish sufficient conditions for the existence of non-trivial symmetries and show that under natural assumptions such a symmetry is semi-simple, i.e. is a scaling in some coordinates. Using the obtained results, we provide a complete classification of hexagonal singular 3-web germs in the complex plane, satisfying the following two conditions: 1) the Chern connection form is holomorphic at the singular point, 2) the web admits at least one infinitesimal symmetry at this point. As a by-product, a classification of hexagonal weighted homogeneous 3-webs is obtained.en
dc.format.extent1-29-
dc.language.isoeng-
dc.sourceCurrículo Lattes-
dc.subjectHexagonal 3-weben
dc.subjectInfinitesimal symmetriesen
dc.subjectChern connectionen
dc.subjectImplicit ODEen
dc.titleLocal classification of singular hexagonal 3-webs with holomorphic Chern connection form and infinitesimal symmetriesen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationUniversidade Estadual Paulista Júlio de Mesquita Filho, Instituto de Biociências Letras e Ciências Exatas de São José do Rio Preto, São José do Rio Preto, Rua Cristóvão Colombo 2265, Jardim Nazareth, CEP 15054000, SP, Brasil-
dc.description.affiliationUnespUniversidade Estadual Paulista Júlio de Mesquita Filho, Instituto de Biociências Letras e Ciências Exatas de São José do Rio Preto, São José do Rio Preto, Rua Cristóvão Colombo 2265, Jardim Nazareth, CEP 15054000, SP, Brasil-
dc.identifier.doihttp://dx.doi.org/10.1007/s10711-014-9960-8-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofGeometriae Dedicata-
dc.identifier.lattes8731229576624291-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.