You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/122693
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAndrade, Maria Gorete Carreira-
dc.contributor.authorFanti, Ermínia de Lourdes Campello-
dc.date.accessioned2015-04-27T11:55:58Z-
dc.date.accessioned2016-10-25T20:46:51Z-
dc.date.available2015-04-27T11:55:58Z-
dc.date.available2016-10-25T20:46:51Z-
dc.date.issued2012-
dc.identifierhttp://www.diogenes.bg/ijam/contents/index.html-
dc.identifier.citationInternational Journal of Applied Mathematics, v. 25, n. 2, p. 183-190, 2012.-
dc.identifier.issn1311-1728-
dc.identifier.urihttp://hdl.handle.net/11449/122693-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/122693-
dc.description.abstractLet G be a group, W a nonempty G-set and M a Z2G-module. Consider the restriction map resG W : H1(G,M) → Pi wi∈E H1(Gwi,M), [f] → (resGG wi [f])i∈I , where E = {wi, i ∈ I} is a set of orbit representatives in W and Gwi = {g ∈ G | gwi = wi} is the G-stabilizer subgroup (or isotropy subgroup) of wi, for each wi ∈ E. In this work we analyze some results presented in Andrade et al [5] about splittings and duality of groups, using the point of view of Dicks and Dunwoody [10] and the invariant E'(G,W) := 1+dimkerresG W, defined when Gwi is a subgroup of infinite index in G for all wi in E, andM = Z2 (where dim = dimZ2). We observe that the theory of splittings of groups (amalgamated free product and HNN-groups) is inserted in the combinatory theory of groups which has many applications in graph theory (see, for example, Serre [12] and Dicks and Dunwoody [10]).en
dc.format.extent183-190-
dc.language.isoeng-
dc.sourceCurrículo Lattes-
dc.subjectcohomology of groupsen
dc.subjectdualityen
dc.subjectsplittings of groupsen
dc.titleThe cohomological invariant E'(G,W) and some propertiesen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationUniversidade Estadual Paulista Júlio de Mesquita Filho, Departamento de Matemática, Instituto de Biociências Letras e Ciências Exatas de São José do Rio Preto, Sao Jose do Rio Preto, Rua Cristóvão Colombo, 2265, Jardim Nazareth, CEP 15054-000, SP, Brasil-
dc.description.affiliationUnespUniversidade Estadual Paulista Júlio de Mesquita Filho, Departamento de Matemática, Instituto de Biociências Letras e Ciências Exatas de São José do Rio Preto, Sao Jose do Rio Preto, Rua Cristóvão Colombo, 2265, Jardim Nazareth, CEP 15054-000, SP, Brasil-
dc.rights.accessRightsAcesso aberto-
dc.relation.ispartofInternational Journal of Applied Mathematics-
dc.identifier.lattes0358661907070998-
dc.identifier.lattes3186337502957366-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.