Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/122703
- Title:
- Involutions whose fixed set has three or four components: a small codimension phenomenon
- Universidade Estadual Paulista (UNESP)
- Universidade Federal de São Carlos (UFSCar)
- 1903-1807
- Let T : M → M be a smooth involution on a closed smooth manifold and F = n j=0 F j the fixed point set of T, where F j denotes the union of those components of F having dimension j and thus n is the dimension of the component of F of largest dimension. In this paper we prove the following result, which characterizes a small codimension phenomenon: suppose that n ≥ 4 is even and F has one of the following forms: 1) F = F n ∪ F 3 ∪ F 2 ∪ {point}; 2) F = F n ∪ F 3 ∪ F 2 ; 3) F = F n ∪ F 3 ∪ {point}; or 4) F = F n ∪ F 3 . Also, suppose that the normal bundles of F n, F 3 and F 2 in M do not bound. If k denote the codimension of F n, then k ≤ 4. Further, we construct involutions showing that this bound is best possible in the cases 2) and 4), and in the cases 1) and 3) when n is of the form n = 4t, with t ≥ 1.
- 2012
- Mathematica Scandinavica, v. 110, n. 2, p. 223-234, 2012.
- 223-234
- Involução; Fixed data; classe de Stiefel-Whitney;
- http://www.mscand.dk/article/view/15205
- Acesso restrito
- outro
- http://repositorio.unesp.br/handle/11449/122703
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.