Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/122703
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Barbaresco, Evelin Meneguesso | - |
dc.contributor.author | Desideri, Patrícia Elaine | - |
dc.contributor.author | Pergher, Pedro Luiz Queiroz | - |
dc.date.accessioned | 2015-04-27T11:55:58Z | - |
dc.date.accessioned | 2016-10-25T20:46:52Z | - |
dc.date.available | 2015-04-27T11:55:58Z | - |
dc.date.available | 2016-10-25T20:46:52Z | - |
dc.date.issued | 2012 | - |
dc.identifier | http://www.mscand.dk/article/view/15205 | - |
dc.identifier.citation | Mathematica Scandinavica, v. 110, n. 2, p. 223-234, 2012. | - |
dc.identifier.issn | 1903-1807 | - |
dc.identifier.uri | http://hdl.handle.net/11449/122703 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/122703 | - |
dc.description.abstract | Let T : M → M be a smooth involution on a closed smooth manifold and F = n j=0 F j the fixed point set of T, where F j denotes the union of those components of F having dimension j and thus n is the dimension of the component of F of largest dimension. In this paper we prove the following result, which characterizes a small codimension phenomenon: suppose that n ≥ 4 is even and F has one of the following forms: 1) F = F n ∪ F 3 ∪ F 2 ∪ {point}; 2) F = F n ∪ F 3 ∪ F 2 ; 3) F = F n ∪ F 3 ∪ {point}; or 4) F = F n ∪ F 3 . Also, suppose that the normal bundles of F n, F 3 and F 2 in M do not bound. If k denote the codimension of F n, then k ≤ 4. Further, we construct involutions showing that this bound is best possible in the cases 2) and 4), and in the cases 1) and 3) when n is of the form n = 4t, with t ≥ 1. | en |
dc.format.extent | 223-234 | - |
dc.language.iso | eng | - |
dc.source | Currículo Lattes | - |
dc.subject | Involução; Fixed data; classe de Stiefel-Whitney; | en |
dc.title | Involutions whose fixed set has three or four components: a small codimension phenomenon | en |
dc.type | outro | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.contributor.institution | Universidade Federal de São Carlos (UFSCar) | - |
dc.description.affiliation | Universidade Estadual Paulista Júlio de Mesquita Filho, Instituto de Biociências Letras e Ciências Exatas de São José do Rio Preto, Sao Jose do Rio Preto, Rua Cristóvão Colombo, 2265 PABX: (17), Jardim Nazareth, CEP 15054-000, SP, Brasil | - |
dc.description.affiliationUnesp | Universidade Estadual Paulista Júlio de Mesquita Filho, Departamento de Matemática, Instituto de Biociências Letras e Ciências Exatas de São José do Rio Preto | - |
dc.rights.accessRights | Acesso restrito | - |
dc.relation.ispartof | Mathematica Scandinavica | - |
dc.identifier.lattes | 6556211699447687 | - |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.