You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/122703
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBarbaresco, Evelin Meneguesso-
dc.contributor.authorDesideri, Patrícia Elaine-
dc.contributor.authorPergher, Pedro Luiz Queiroz-
dc.date.accessioned2015-04-27T11:55:58Z-
dc.date.accessioned2016-10-25T20:46:52Z-
dc.date.available2015-04-27T11:55:58Z-
dc.date.available2016-10-25T20:46:52Z-
dc.date.issued2012-
dc.identifierhttp://www.mscand.dk/article/view/15205-
dc.identifier.citationMathematica Scandinavica, v. 110, n. 2, p. 223-234, 2012.-
dc.identifier.issn1903-1807-
dc.identifier.urihttp://hdl.handle.net/11449/122703-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/122703-
dc.description.abstractLet T : M → M be a smooth involution on a closed smooth manifold and F = n j=0 F j the fixed point set of T, where F j denotes the union of those components of F having dimension j and thus n is the dimension of the component of F of largest dimension. In this paper we prove the following result, which characterizes a small codimension phenomenon: suppose that n ≥ 4 is even and F has one of the following forms: 1) F = F n ∪ F 3 ∪ F 2 ∪ {point}; 2) F = F n ∪ F 3 ∪ F 2 ; 3) F = F n ∪ F 3 ∪ {point}; or 4) F = F n ∪ F 3 . Also, suppose that the normal bundles of F n, F 3 and F 2 in M do not bound. If k denote the codimension of F n, then k ≤ 4. Further, we construct involutions showing that this bound is best possible in the cases 2) and 4), and in the cases 1) and 3) when n is of the form n = 4t, with t ≥ 1.en
dc.format.extent223-234-
dc.language.isoeng-
dc.sourceCurrículo Lattes-
dc.subjectInvolução; Fixed data; classe de Stiefel-Whitney;en
dc.titleInvolutions whose fixed set has three or four components: a small codimension phenomenonen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)-
dc.description.affiliationUniversidade Estadual Paulista Júlio de Mesquita Filho, Instituto de Biociências Letras e Ciências Exatas de São José do Rio Preto, Sao Jose do Rio Preto, Rua Cristóvão Colombo, 2265 PABX: (17), Jardim Nazareth, CEP 15054-000, SP, Brasil-
dc.description.affiliationUnespUniversidade Estadual Paulista Júlio de Mesquita Filho, Departamento de Matemática, Instituto de Biociências Letras e Ciências Exatas de São José do Rio Preto-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofMathematica Scandinavica-
dc.identifier.lattes6556211699447687-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.