You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/122815
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMartinez, Cristiane Aparecida Pendeza-
dc.contributor.authorBorges Neto, Manoel Ferreira-
dc.contributor.authorMartinez, André L.M.-
dc.contributor.authorCastelani, Emerson V.-
dc.date.accessioned2015-04-27T11:56:03Z-
dc.date.accessioned2016-10-25T20:47:07Z-
dc.date.available2015-04-27T11:56:03Z-
dc.date.available2016-10-25T20:47:07Z-
dc.date.issued2012-
dc.identifierhttp://www.diogenes.bg/ijam/contents/index.html-
dc.identifier.citationInternational Journal of Applied Mathematics, v. 25, n. 4, p. 557-568, 2012.-
dc.identifier.issn1311-1728-
dc.identifier.urihttp://hdl.handle.net/11449/122815-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/122815-
dc.description.abstractIn this paper we introduce a type of Hypercomplex Fourier Series based on Quaternions, and discuss on a Hypercomplex version of the Square of the Error Theorem. Since their discovery by Hamilton (Sinegre [1]), quaternions have provided beautifully insights either on the structure of different areas of Mathematics or in the connections of Mathematics with other fields. For instance: I) Pauli spin matrices used in Physics can be easily explained through quaternions analysis (Lan [2]); II) Fundamental theorem of Algebra (Eilenberg [3]), which asserts that the polynomial analysis in quaternions maps into itself the four dimensional sphere of all real quaternions, with the point infinity added, and the degree of this map is n. Motivated on earlier works by two of us on Power Series (Pendeza et al. [4]), and in a recent paper on Liouville’s Theorem (Borges and Mar˜o [5]), we obtain an Hypercomplex version of the Fourier Series, which hopefully can be used for the treatment of hypergeometric partial differential equations such as the dumped harmonic oscillation.en
dc.format.extent557-568-
dc.language.isoeng-
dc.sourceCurrículo Lattes-
dc.titleFourier series for quaternions and the square of the error theoremen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationUniversidade Estadual Paulista Júlio de Mesquita Filho, Departamento de Ciência da Computação e Estatística, Instituto de Biociências Letras e Ciências Exatas de São José do Rio Preto, São José do Rio Preto, Rua Cristovão Colombo 2265, Jardim Nazaré, CEP 15054000, SP, Brasil-
dc.description.affiliationUnespUniversidade Estadual Paulista Júlio de Mesquita Filho, Departamento de Ciência da Computação e Estatística, Instituto de Biociências Letras e Ciências Exatas de São José do Rio Preto, São José do Rio Preto, Rua Cristovão Colombo 2265, Jardim Nazaré, CEP 15054000, SP, Brasil-
dc.description.affiliationUnespCOMAT, Federal Technological University of Paraná CEP: 86300-000, Corn´elio Proc´opio, PR, BRASIL-
dc.rights.accessRightsAcesso aberto-
dc.relation.ispartofInternational Journal of Applied Mathematics-
dc.identifier.lattes7955413331293674-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.