Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/122876
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Shah, Tariq | - |
dc.contributor.author | Andrade, Antonio Aparecido de | - |
dc.date.accessioned | 2015-04-27T11:56:07Z | - |
dc.date.accessioned | 2016-10-25T20:47:14Z | - |
dc.date.available | 2015-04-27T11:56:07Z | - |
dc.date.available | 2016-10-25T20:47:14Z | - |
dc.date.issued | 2012 | - |
dc.identifier | http://www.i-asr.com/Journals/jaram/ArticleDetail.aspx?PaperID=1283 | - |
dc.identifier.citation | Journal of Advanced Research in Applied Mathematics, v. 4, n. 4, p. 37-50, 2012. | - |
dc.identifier.issn | 1942-9649 | - |
dc.identifier.uri | http://hdl.handle.net/11449/122876 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/122876 | - |
dc.description.abstract | Corresponding to $C_{0}[n,n-r]$, a binary cyclic code generated by a primitive irreducible polynomial $p(X)\in \mathbb{F}_{2}[X]$ of degree $r=2b$, where $b\in \mathbb{Z}^{+}$, we can constitute a binary cyclic code $C[(n+1)^{3^{k}}-1,(n+1)^{3^{k}}-1-3^{k}r]$, which is generated by primitive irreducible generalized polynomial $p(X^{\frac{1}{3^{k}}})\in \mathbb{F}_{2}[X;\frac{1}{3^{k}}\mathbb{Z}_{0}]$ with degree $3^{k}r$, where $k\in \mathbb{Z}^{+}$. This new code $C$ improves the code rate and has error corrections capability higher than $C_{0}$. The purpose of this study is to establish a decoding procedure for $C_{0}$ by using $C$ in such a way that one can obtain an improved code rate and error-correcting capabilities for $C_{0}$. | en |
dc.format.extent | 37-50 | - |
dc.language.iso | eng | - |
dc.source | Currículo Lattes | - |
dc.subject | Semigroup ring | en |
dc.subject | Binary cyclic code | en |
dc.subject | Binary Hamming code | en |
dc.subject | Decoding principle | en |
dc.subject | Code rate | en |
dc.subject | Error correction | en |
dc.title | A decoding procedure which improves code rate and error corrections | en |
dc.type | outro | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.description.affiliation | Universidade Estadual Paulista Júlio de Mesquita Filho, Instituto de Biociencias, Letras e Ciencias Exatas de Sao Jose do Rio Preto, Sao Jose do Rio Preto, RUA CRISTOVAO COLOMBO 2265 - DEPARTAMENTO DE MATEMATICA, JARDIM NAZARETH, CEP 15054-000, SP, Brasil | - |
dc.description.affiliationUnesp | Universidade Estadual Paulista Júlio de Mesquita Filho, Instituto de Biociencias, Letras e Ciencias Exatas de Sao Jose do Rio Preto, Sao Jose do Rio Preto, RUA CRISTOVAO COLOMBO 2265 - DEPARTAMENTO DE MATEMATICA, JARDIM NAZARETH, CEP 15054-000, SP, Brasil | - |
dc.identifier.doi | http://dx.doi.org/10.5373/jaram.1283.013112 | - |
dc.rights.accessRights | Acesso restrito | - |
dc.relation.ispartof | Journal of Advanced Research in Applied Mathematics | - |
dc.identifier.lattes | 8940498347481982 | - |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.