You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/122906
Full metadata record
DC FieldValueLanguage
dc.contributor.authorValencio, Carlos R.-
dc.contributor.authorOyama, Fernando T.-
dc.contributor.authorScarpelini, Paulo-
dc.contributor.authorColombini, Angelo C.-
dc.contributor.authorSouza, Rogeria C. G. de |Correa, Pedro L. P.-
dc.contributor.authorCansian, Adriano Mauro-
dc.date.accessioned2015-04-27T11:56:08Z-
dc.date.accessioned2016-10-25T20:47:17Z-
dc.date.available2015-04-27T11:56:08Z-
dc.date.available2016-10-25T20:47:17Z-
dc.date.issued2012-
dc.identifierhttp://dx.doi.org/10.1186/2192-1962-2-4-
dc.identifier.citationHuman-centric Computing and Information Sciences, v. 2, 2012.-
dc.identifier.issn2192-1962-
dc.identifier.urihttp://hdl.handle.net/11449/122906-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/122906-
dc.description.abstractBackground: Once multi-relational approach has emerged as an alternative for analyzing structured data such as relational databases, since they allow applying data mining in multiple tables directly, thus avoiding expensive joining operations and semantic losses, this work proposes an algorithm with multi-relational approach. Methods: Aiming to compare traditional approach performance and multi-relational for mining association rules, this paper discusses an empirical study between PatriciaMine - an traditional algorithm - and its corresponding multi-relational proposed, MR-Radix. Results: This work showed advantages of the multi-relational approach in performance over several tables, which avoids the high cost for joining operations from multiple tables and semantic losses. The performance provided by the algorithm MR-Radix shows faster than PatriciaMine, despite handling complex multi-relational patterns. The utilized memory indicates a more conservative growth curve for MR-Radix than PatriciaMine, which shows the increase in demand of frequent items in MR-Radix does not result in a significant growth of utilized memory like in PatriciaMine. Conclusion: The comparative study between PatriciaMine and MR-Radix confirmed efficacy of the multi-relational approach in data mining process both in terms of execution time and in relation to memory usage. Besides that, the multi-relational proposed algorithm, unlike other algorithms of this approach, is efficient for use in large relational databases.en
dc.language.isoeng-
dc.sourceCurrículo Lattes-
dc.subjectMR-Radixen
dc.subjectMulti-relational data miningen
dc.subjectAssociation rulesen
dc.subjectMining frequent itemsetsen
dc.subjectRelational databasesen
dc.titleMR-Radix: a multi-relational data mining algorithmen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationUniversidade Estadual Paulista Júlio de Mesquita Filho, Departamento de Ciência da Computação e Estatística, Instituto de Biociências Letras e Ciências Exatas de São José do Rio Preto, Sao Jose do Rio Preto, R. Cristóvão Colombo, 2265, Jardim Nazareth, CEP 15055-000, SP, Brasil-
dc.description.affiliationUnespUniversidade Estadual Paulista Júlio de Mesquita Filho, Departamento de Ciência da Computação e Estatística, Instituto de Biociências Letras e Ciências Exatas de São José do Rio Preto, Sao Jose do Rio Preto, R. Cristóvão Colombo, 2265, Jardim Nazareth, CEP 15055-000, SP, Brasil-
dc.description.affiliationUnespFederal University of São Carlos - UFSCar, Rodovia Washington Luís, Km 235, Caixa Postal 676 São Carlos, SP, Brazil-
dc.description.affiliationUnespUniversity of São Paulo - USP, Avenida Prof. Luciano Gualberto, 380, travessa 3, São Paulo, São Paulo, Brazil-
dc.identifier.doihttp://dx.doi.org/10.1186/2192-1962-2-4-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofHuman-centric Computing and Information Sciences-
dc.identifier.lattes0095921943345974-
dc.identifier.lattes5564862621270143-
dc.identifier.lattes5914651754517864-
dc.identifier.lattes3640608958277159-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.