Você está no menu de acessibilidade

Utilize este identificador para citar ou criar um link para este item: http://acervodigital.unesp.br/handle/11449/125311
Registro de metadados completo
Campo DCValorIdioma
dc.contributor.authorKalatzis, Aquiles Elie Guimarâes-
dc.contributor.authorAzzoni, Carlos Roberto-
dc.contributor.authorBassetto, Camila Fernanda-
dc.date.accessioned2015-07-15T18:28:53Z-
dc.date.accessioned2016-10-25T20:52:37Z-
dc.date.available2015-07-15T18:28:53Z-
dc.date.available2016-10-25T20:52:37Z-
dc.date.issued2011-
dc.identifier.citationJournal of Applied Statistics, v. 38, p. 287-299, 2011.-
dc.identifier.issn0266-4763-
dc.identifier.urihttp://hdl.handle.net/11449/125311-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/125311-
dc.description.abstractThis paper addresses the investment decisions considering the presence of financial constraints of 373 large Brazilian firms from 1997 to 2004, using panel data. A Bayesian econometric model was used considering ridge regression for multicollinearity problems among the variables in the model. Prior distributions are assumed for the parameters, classifying the model into random or fixed effects. We used a Bayesian approach to estimate the parameters, considering normal and Student t distributions for the error and assumed that the initial values for the lagged dependent variable are not fixed, but generated by a random process. The recursive predictive density criterion was used for model comparisons. Twenty models were tested and the results indicated that multicollinearity does influence the value of the estimated parameters. Controlling for capital intensity, financial constraints are found to be more important for capital-intensive firms, probably due to their lower profitability indexes, higher fixed costs and higher degree of property diversification.en
dc.format.extent287-299-
dc.language.isoeng-
dc.sourceCurrículo Lattes-
dc.subjectInvestment decisionen
dc.subjectFinancial constrainten
dc.subjectBayesian ridge regressionen
dc.subjectBayesian approachen
dc.subjectCapital intensityen
dc.titleMulticollinearity and financial constraint in investment decisions: a bayesian generalized ridge regressionen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationUniversidade Estadual Paulista Júlio de Mesquita Filho, Faculdade de Ciências e Letras de Araraquara, Araraquara, Faculdade de Ciências e Letras - Unesp, Campos Ville, CEP 14800901, SP, Brasil-
dc.description.affiliationUnespUniversidade Estadual Paulista Júlio de Mesquita Filho, Faculdade de Ciências e Letras de Araraquara, Araraquara, Faculdade de Ciências e Letras - Unesp, Campos Ville, CEP 14800901, SP, Brasil-
dc.identifier.doihttp://dx.doi.org/10.1080/02664760903406462-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofJournal of Applied Statistics-
dc.identifier.lattes5089831236213689-
dc.identifier.lattes7788895623440612-
dc.identifier.lattes7555125918098797-
Aparece nas coleções:Artigos, TCCs, Teses e Dissertações da Unesp

Não há nenhum arquivo associado com este item.
 

Itens do Acervo digital da UNESP são protegidos por direitos autorais reservados a menos que seja expresso o contrário.