You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/12545
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPapa, J. P.-
dc.contributor.authorPagnin, A.-
dc.contributor.authorSchellini, Silvana Artioli-
dc.contributor.authorSpadotto, A.-
dc.contributor.authorGuido, R. C.-
dc.contributor.authorPonti, M.-
dc.contributor.authorChiachia, G.-
dc.contributor.authorFalcao, A. X.-
dc.date.accessioned2014-05-20T13:36:26Z-
dc.date.accessioned2016-10-25T16:53:29Z-
dc.date.available2014-05-20T13:36:26Z-
dc.date.available2016-10-25T16:53:29Z-
dc.date.issued2011-01-01-
dc.identifierhttp://dx.doi.org/10.1109/ICASSP.2011.5946916-
dc.identifier.citation2011 IEEE International Conference on Acoustics, Speech, and Signal Processing. New York: IEEE, p. 2052-2055, 2011.-
dc.identifier.issn1520-6149-
dc.identifier.urihttp://hdl.handle.net/11449/12545-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/12545-
dc.description.abstractIn this paper we deal with the problem of feature selection by introducing a new approach based on Gravitational Search Algorithm (GSA). The proposed algorithm combines the optimization behavior of GSA together with the speed of Optimum-Path Forest (OPF) classifier in order to provide a fast and accurate framework for feature selection. Experiments on datasets obtained from a wide range of applications, such as vowel recognition, image classification and fraud detection in power distribution systems are conducted in order to asses the robustness of the proposed technique against Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA) and a Particle Swarm Optimization (PSO)-based algorithm for feature selection.en
dc.format.extent2052-2055-
dc.language.isoeng-
dc.publisherIEEE-
dc.sourceWeb of Science-
dc.subjectFeature selectionen
dc.subjectPattern classificationen
dc.subjectOptimum-Path Foresten
dc.subjectGravitational Search Algorithmen
dc.titleFeature selection through gravitational search algorithmen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationUNESP Univ Estadual Paulista, Dept Comp, São Paulo, Brazil-
dc.description.affiliationUnespUNESP Univ Estadual Paulista, Dept Comp, São Paulo, Brazil-
dc.identifier.doi10.1109/ICASSP.2011.5946916-
dc.identifier.wosWOS:000296062402094-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartof2011 IEEE International Conference on Acoustics, Speech, and Signal Processing-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.