You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/127107
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSilva, N. R.-
dc.contributor.authorFlorindo, J. B.-
dc.contributor.authorGómez, M. C.-
dc.contributor.authorKolb, Rosana Marta-
dc.contributor.authorBruno, O. M.-
dc.date.accessioned2015-08-21T17:53:55Z-
dc.date.accessioned2016-10-25T20:56:38Z-
dc.date.available2015-08-21T17:53:55Z-
dc.date.available2016-10-25T20:56:38Z-
dc.date.issued2014-
dc.identifierhttp://iopscience.iop.org/1742-6596/490/1/012085/-
dc.identifier.citationJournal of Physics. Conference Series, v. 490, n. 1, p. 12085, 2014.-
dc.identifier.issn1742-6596-
dc.identifier.urihttp://hdl.handle.net/11449/127107-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/127107-
dc.description.abstractThis study proposes the application of fractal descriptors method to the discrimination of microscopy images of plant leaves. Fractal descriptors have demonstrated to be a powerful discriminative method in image analysis, mainly for the discrimination of natural objects. In fact, these descriptors express the spatial arrangement of pixels inside the texture under different scales and such arrangements are directly related to physical properties inherent to the material depicted in the image. Here, we employ the Bouligand-Minkowski descriptors. These are obtained by the dilation of a surface mapping the gray-level texture. The classification of the microscopy images is performed by the well-known Support Vector Machine (SVM) method and we compare the success rate with other literature texture analysis methods. The proposed method achieved a correctness rate of 89%, while the second best solution, the Co-occurrence descriptors, yielded only 78%. This clear advantage of fractal descriptors demonstrates the potential of such approach in the analysis of the plant microscopy images.en
dc.format.extent12085-
dc.language.isoeng-
dc.sourceCurrículo Lattes-
dc.titleFractal descriptors for discrimination of microscopy images of plant leavesen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionUniversidade de São Paulo (USP)-
dc.contributor.institutionUniversidad Nacional del Litoral-
dc.description.affiliationInstitute of Mathematics and Computer Science, University of SãO Paulo (USP), Avenida Trabalhador são-carlense, 400 13566-590 SãO Carlos, SãO Paulo, Brazil-
dc.description.affiliationScientific Computing Group, SãO Carlos Institute of Physics, University of SãO Paulo (USP), cx 369 13560-970 SãO Carlos, SãO Paulo, Brazil-
dc.description.affiliationDepartment of Physics, Faculty of Biochemistry and Biological Sciences, National University of Littoral, S3000ZAA Santa Fe, Argentina-
dc.description.affiliationUnespUniversidade Estadual Paulista Júlio de Mesquita Filho, Faculdade de Ciências e Letras de Assis, Assis, Av. Dom Antônio, 2100, Depto de Ciências Biológicas, Parque Universitário, CEP 19806-900, SP, Brasil-
dc.description.affiliationUnespDepartment of Biological Sciences, Faculty of Sciences and Letters, Universidade Estadual Paulista Júlio de Mesquita Filho, UNESP. Av. Dom Antônio, 2100, 19806-900, Assis, Brazil-
dc.identifier.doihttp://dx.doi.org/10.1088/1742-6596/490/1/012085-
dc.rights.accessRightsAcesso aberto-
dc.relation.ispartofJournal of Physics. Conference Series-
dc.identifier.orcid0000-0003-3841-5597pt
dc.identifier.lattes9548962911240501-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.