You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/128742
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAlmeida, Jurandy-
dc.contributor.authorSantos, Jefersson A. dos-
dc.contributor.authorMiranda, Waner O.-
dc.contributor.authorAlberton, Bruna-
dc.contributor.authorMorellato, Leonor Patricia C.-
dc.contributor.authorTorres, Ricardo da S.-
dc.date.accessioned2015-10-21T13:12:57Z-
dc.date.accessioned2016-10-25T21:00:20Z-
dc.date.available2015-10-21T13:12:57Z-
dc.date.available2016-10-25T21:00:20Z-
dc.date.issued2015-03-01-
dc.identifierhttp://www.sciencedirect.com/science/article/pii/S1574954115000114-
dc.identifier.citationEcological Informatics. Amsterdam: Elsevier Science Bv, v. 26, p. 61-69, 2015.-
dc.identifier.issn1574-9541-
dc.identifier.urihttp://hdl.handle.net/11449/128742-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/128742-
dc.description.abstractPlant phenology studies recurrent plant life cycle events and is a key component for understanding the impact of climate change. To increase accuracy of observations, new technologies have been applied for phenological observation, and one of the most successful strategies relies on the use of digital cameras, which are used as multi-channel imaging sensors to estimate color changes that are related to phenological events. We monitor leaf-changing patterns of a cerrado-savanna vegetation by taking daily digital images. We extract individual plant color information and correlate with leaf phenological changes. For that, several vegetation indices associated with plant species are exploited for both pattern analysis and knowledge extraction. In this paper, we present a novel approach for deriving appropriate vegetation indices from vegetation digital images. The proposed method is based on learning phenological patterns from plant species through a genetic programming framework. A comparative analysis of different vegetation indices is conducted and discussed. Experimental results show that our approach presents higher accuracy on characterizing plant species phenology. (C) 2015 Elsevier B.V. All rights reserved.en
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
dc.description.sponsorshipMicrosoft Research Virtual Institute-
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)-
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)-
dc.format.extent61-69-
dc.language.isoeng-
dc.publisherElsevier B.V.-
dc.sourceWeb of Science-
dc.subjectRemote phenologyen
dc.subjectDigital camerasen
dc.subjectImage analysisen
dc.subjectVegetation indicesen
dc.subjectGenetic programmingen
dc.titleDeriving vegetation indices for phenology analysis using genetic programmingen
dc.typeoutro-
dc.contributor.institutionUniversidade de São Paulo (USP)-
dc.contributor.institutionUniversidade Federal de Minas Gerais (UFMG)-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)-
dc.description.affiliationInstitute of Science and Technology, Federal University of São Paulo — UNIFESP, 12247-014 São José dos Campos, SP, Brazil-
dc.description.affiliationDepartment of Computer Science, Universidade Federal de Minas Gerais — UFMG, 31270-010 Belo Horizonte, MG, Brazil-
dc.description.affiliationRECOD Lab, Institute of Computing, University of Campinas — UNICAMP, 13083-852 Campinas, SP, Brazil.-
dc.description.affiliationUnespUniversidade Estadual Paulista Júlio de Mesquita Filho, Phenology Lab, Dept. of Botany, São Paulo State University — UNESP, 13506-900 Rio Claro, SP, Brazil.-
dc.description.sponsorshipIdMicrosoft Research Virtual Institute: 2010/52113-5-
dc.description.sponsorshipIdMicrosoft Research Virtual Institute: 2013/50169-1-
dc.description.sponsorshipIdMicrosoft Research Virtual Institute: 2013/50155-0-
dc.description.sponsorshipIdFAPESP: 2014/00215-0-
dc.description.sponsorshipIdFAPESP: 2007/52015-0-
dc.description.sponsorshipIdFAPESP: 2007/59779-6-
dc.description.sponsorshipIdFAPESP: 2009/18438-7-
dc.description.sponsorshipIdFAPESP: 2010/51307-0-
dc.description.sponsorshipIdCNPq: 306243/2010-5-
dc.description.sponsorshipIdCNPq: 306587/2009-2-
dc.description.sponsorshipIdCNPq: 449638/2014-6-
dc.description.sponsorshipIdFAPEMIG: APQ-00768-14-
dc.identifier.doihttp://dx.doi.org/10.1016/j.ecoinf.2015.01.003-
dc.identifier.wosWOS:000353744700007-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofEcological Informatics-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.