You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/128817
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSilva, Sérgio Henrique-
dc.contributor.authorNascimento, Marcelo Zanchetta do-
dc.contributor.authorNeves, Leandro Alves-
dc.contributor.authorBatista, Valério Ramos-
dc.date.accessioned2015-10-21T13:13:59Z-
dc.date.accessioned2016-10-25T21:00:31Z-
dc.date.available2015-10-21T13:13:59Z-
dc.date.available2016-10-25T21:00:31Z-
dc.date.issued2015-01-01-
dc.identifierhttp://iopscience.iop.org/article/10.1088/1742-6596/574/1/012122/meta-
dc.identifier.citation3rd International Conference On Mathematical Modeling In Physical Sciences (IC-MSQUARE 2014). Bristol: Iop Publishing Ltd, v. 574, p. 1-4, 2015.-
dc.identifier.issn1742-6588-
dc.identifier.urihttp://hdl.handle.net/11449/128817-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/128817-
dc.description.abstractLymphoma is a type of cancer that affects the immune system, and is classified as Hodgkin or non-Hodgkin. It is one of the ten types of cancer that are the most common on earth. Among all malignant neoplasms diagnosed in the world, lymphoma ranges from three to four percent of them. Our work presents a study of some filters devoted to enhancing images of lymphoma at the pre-processing step. Here the enhancement is useful for removing noise from the digital images. We have analysed the noise caused by different sources like room vibration, scraps and defocusing, and in the following classes of lymphoma: follicular, mantle cell and B-cell chronic lymphocytic leukemia. The filters Gaussian, Median and Mean-Shift were applied to different colour models (RGB, Lab and HSV). Afterwards, we performed a quantitative analysis of the images by means of the Structural Similarity Index. This was done in order to evaluate the similarity between the images. In all cases we have obtained a certainty of at least 75%, which rises to 99% if one considers only HSV. Namely, we have concluded that HSV is an important choice of colour model at pre-processing histological images of lymphoma, because in this case the resulting image will get the best enhancement.en
dc.format.extent1-4-
dc.language.isoeng-
dc.publisherIop Publishing Ltd-
dc.sourceWeb of Science-
dc.titleApplying enhancement filters in the pre-processing of images of lymphomaen
dc.typeoutro-
dc.contributor.institutionUniversidade Federal de Uberlândia (UFU)-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionUniversidade Federal do ABC (UFABC)-
dc.description.affiliationUniversidade Federal de Uberlândia, Faculdade de Engenharia Mecânica-
dc.description.affiliationUniversidade Federal de Uberlândia, Faculdade de Ciência da Computação-
dc.description.affiliationUniversidade Federal do ABC, Centro de Matemática, Ciência da Computação e Cognição-
dc.description.affiliationUnespUniversidade Estadual Paulista, Departamento de Ciência da Computação e Estatística, Instituto de Biociências, Letras e Ciências Exatas de São José do Rio Preto-
dc.identifier.doihttp://dx.doi.org/10.1088/1742-6596/574/1/012122-
dc.identifier.wosWOS:000352595600122-
dc.rights.accessRightsAcesso aberto-
dc.identifier.fileWOS000352595600122.pdf-
dc.relation.ispartof3rd International Conference On Mathematical Modeling In Physical Sciences (IC-MSQUARE 2014)-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.