You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/128818
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPavarino, Eduardo-
dc.contributor.authorNeves, Leandro Alves-
dc.contributor.authorNascimento, Marcelo Zanchetta do-
dc.contributor.authorGodoy, Moacir Fernandes de-
dc.contributor.authorArruda, Pedro Francisco de-
dc.contributor.authorSanti Neto, Dalísio de-
dc.date.accessioned2015-10-21T13:13:59Z-
dc.date.accessioned2016-10-25T21:00:31Z-
dc.date.available2015-10-21T13:13:59Z-
dc.date.available2016-10-25T21:00:31Z-
dc.date.issued2015-01-01-
dc.identifierhttp://iopscience.iop.org/article/10.1088/1742-6596/574/1/012135/meta-
dc.identifier.citation3rd International Conference On Mathematical Modeling In Physical Sciences (IC-MSQUARE 2014). Bristol: Iop Publishing Ltd, v. 574, p. 1-4, 2015.-
dc.identifier.issn1742-6588-
dc.identifier.urihttp://hdl.handle.net/11449/128818-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/128818-
dc.description.abstractIn this study is presented an automatic method to classify images from fractal descriptors as decision rules, such as multiscale fractal dimension and lacunarity. The proposed methodology was divided in three steps: quantification of the regions of interest with fractal dimension and lacunarity, techniques under a multiscale approach; definition of reference patterns, which are the limits of each studied group; and, classification of each group, considering the combination of the reference patterns with signals maximization (an approach commonly considered in paraconsistent logic). The proposed method was used to classify histological prostatic images, aiming the diagnostic of prostate cancer. The accuracy levels were important, overcoming those obtained with Support Vector Machine (SVM) and Bestfirst Decicion Tree (BFTree) classifiers. The proposed approach allows recognize and classify patterns, offering the advantage of giving comprehensive results to the specialists.en
dc.format.extent1-4-
dc.language.isoeng-
dc.publisherIop Publishing Ltd-
dc.sourceWeb of Science-
dc.titleAutomatic method to classify images based on multiscale fractal descriptors and paraconsistent logicen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionUniversidade Federal de Uberlândia (UFU)-
dc.contributor.institutionFaculdade de Medicina de São José do Rio Preto(FAMERP)-
dc.contributor.institutionNúcleo Transdisciplinar para Estudo do Caos e da Complexidade (NUTECC)-
dc.contributor.institutionHospital de Base de São José do Rio Preto-
dc.description.affiliationUniversidade Federal de Uberlândia, Faculdade de Ciência da Computação-
dc.description.affiliationHospital de Base de São José do Rio Preto, Departamento de Patologia-
dc.description.affiliationUnespUniversidade Estadual Paulista, Departamento de Ciência da Computação e Estatística, Instituto de Biociências, Letras e Ciências Exatas de São José do Rio Preto-
dc.identifier.doihttp://dx.doi.org/10.1088/1742-6596/574/1/012135-
dc.identifier.wosWOS:000352595600135-
dc.rights.accessRightsAcesso aberto-
dc.identifier.fileWOS000352595600135.pdf-
dc.relation.ispartof3rd International Conference On Mathematical Modeling In Physical Sciences (IC-MSQUARE 2014)-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.