Você está no menu de acessibilidade

Utilize este identificador para citar ou criar um link para este item: http://acervodigital.unesp.br/handle/11449/128819
Registro de metadados completo
Campo DCValorIdioma
dc.contributor.authorNascimento, Marcelo Zanchetta do-
dc.contributor.authorNeves, Leandro Alves-
dc.contributor.authorDuarte, Sidon Cléo-
dc.contributor.authorDuarte, Yan Anderson Siriano-
dc.contributor.authorBatista, Valério Ramos-
dc.date.accessioned2015-10-21T13:14:00Z-
dc.date.accessioned2016-10-25T21:00:32Z-
dc.date.available2015-10-21T13:14:00Z-
dc.date.available2016-10-25T21:00:32Z-
dc.date.issued2015-01-01-
dc.identifierhttp://iopscience.iop.org/article/10.1088/1742-6596/574/1/012133/meta-
dc.identifier.citation3rd International Conference On Mathematical Modeling In Physical Sciences (IC-MSQUARE 2014). Bristol: Iop Publishing Ltd, v. 574, p. 1-4, 2015.-
dc.identifier.issn1742-6588-
dc.identifier.urihttp://hdl.handle.net/11449/128819-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/128819-
dc.description.abstractNon-Hodgkin lymphomas are of many distinct types, and different classification systems make it difficult to diagnose them correctly. Many of these systems classify lymphomas only based on what they look like under a microscope. In 2008 the World Health Organisation (WHO) introduced the most recent system, which also considers the chromosome features of the lymphoma cells and the presence of certain proteins on their surface. The WHO system is the one that we apply in this work. Herewith we present an automatic method to classify histological images of three types of non-Hodgkin lymphoma. Our method is based on the Stationary Wavelet Transform (SWT), and it consists of three steps: 1) extracting sub-bands from the histological image through SWT, 2) applying Analysis of Variance (ANOVA) to clean noise and select the most relevant information, 3) classifying it by the Support Vector Machine (SVM) algorithm. The kernel types Linear, RBF and Polynomial were evaluated with our method applied to 210 images of lymphoma from the National Institute on Aging. We concluded that the following combination led to the most relevant results: detail sub-band, ANOVA and SVM with Linear and RBF kernels.en
dc.format.extent1-4-
dc.language.isoeng-
dc.publisherIop Publishing Ltd-
dc.sourceWeb of Science-
dc.titleClassification of histological images based on the stationary wavelet transformen
dc.typeoutro-
dc.contributor.institutionUniversidade Federal de Uberlândia (UFU)-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionUniversidade Federal do ABC (UFABC)-
dc.description.affiliationUniversidade Federal de Uberlândia, Faculdade de Ciência da Computação-
dc.description.affiliationUniversidade Federal do ABC, Centro de Matemática, Ciência da Computação e Cognição-
dc.description.affiliationUnespUniversidade Estadual Paulista, Departamento de Ciência da Computação e Estatística, Instituto de Biociências, Letras e Ciências Exatas de São José do Rio Preto-
dc.identifier.doihttp://dx.doi.org/10.1088/1742-6596/574/1/012133-
dc.identifier.wosWOS:000352595600133-
dc.rights.accessRightsAcesso aberto-
dc.identifier.fileWOS000352595600133.pdf-
dc.relation.ispartof3rd International Conference On Mathematical Modeling In Physical Sciences (IC-MSQUARE 2014)-
Aparece nas coleções:Artigos, TCCs, Teses e Dissertações da Unesp

Não há nenhum arquivo associado com este item.
 

Itens do Acervo digital da UNESP são protegidos por direitos autorais reservados a menos que seja expresso o contrário.