You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/128819
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNascimento, Marcelo Zanchetta do-
dc.contributor.authorNeves, Leandro Alves-
dc.contributor.authorDuarte, Sidon Cléo-
dc.contributor.authorDuarte, Yan Anderson Siriano-
dc.contributor.authorBatista, Valério Ramos-
dc.date.accessioned2015-10-21T13:14:00Z-
dc.date.accessioned2016-10-25T21:00:32Z-
dc.date.available2015-10-21T13:14:00Z-
dc.date.available2016-10-25T21:00:32Z-
dc.date.issued2015-01-01-
dc.identifierhttp://iopscience.iop.org/article/10.1088/1742-6596/574/1/012133/meta-
dc.identifier.citation3rd International Conference On Mathematical Modeling In Physical Sciences (IC-MSQUARE 2014). Bristol: Iop Publishing Ltd, v. 574, p. 1-4, 2015.-
dc.identifier.issn1742-6588-
dc.identifier.urihttp://hdl.handle.net/11449/128819-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/128819-
dc.description.abstractNon-Hodgkin lymphomas are of many distinct types, and different classification systems make it difficult to diagnose them correctly. Many of these systems classify lymphomas only based on what they look like under a microscope. In 2008 the World Health Organisation (WHO) introduced the most recent system, which also considers the chromosome features of the lymphoma cells and the presence of certain proteins on their surface. The WHO system is the one that we apply in this work. Herewith we present an automatic method to classify histological images of three types of non-Hodgkin lymphoma. Our method is based on the Stationary Wavelet Transform (SWT), and it consists of three steps: 1) extracting sub-bands from the histological image through SWT, 2) applying Analysis of Variance (ANOVA) to clean noise and select the most relevant information, 3) classifying it by the Support Vector Machine (SVM) algorithm. The kernel types Linear, RBF and Polynomial were evaluated with our method applied to 210 images of lymphoma from the National Institute on Aging. We concluded that the following combination led to the most relevant results: detail sub-band, ANOVA and SVM with Linear and RBF kernels.en
dc.format.extent1-4-
dc.language.isoeng-
dc.publisherIop Publishing Ltd-
dc.sourceWeb of Science-
dc.titleClassification of histological images based on the stationary wavelet transformen
dc.typeoutro-
dc.contributor.institutionUniversidade Federal de Uberlândia (UFU)-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionUniversidade Federal do ABC (UFABC)-
dc.description.affiliationUniversidade Federal de Uberlândia, Faculdade de Ciência da Computação-
dc.description.affiliationUniversidade Federal do ABC, Centro de Matemática, Ciência da Computação e Cognição-
dc.description.affiliationUnespUniversidade Estadual Paulista, Departamento de Ciência da Computação e Estatística, Instituto de Biociências, Letras e Ciências Exatas de São José do Rio Preto-
dc.identifier.doihttp://dx.doi.org/10.1088/1742-6596/574/1/012133-
dc.identifier.wosWOS:000352595600133-
dc.rights.accessRightsAcesso aberto-
dc.identifier.fileWOS000352595600133.pdf-
dc.relation.ispartof3rd International Conference On Mathematical Modeling In Physical Sciences (IC-MSQUARE 2014)-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.