You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/128820
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAmorim, Anderson Rici-
dc.contributor.authorZafalon, Geraldo Francisco Donegá-
dc.contributor.authorNeves, Leandro Alves-
dc.contributor.authorPinto, Alex Sandro Roschildt-
dc.contributor.authorValêncio, Carlos Roberto-
dc.contributor.authorMachado, José Márcio-
dc.date.accessioned2015-10-21T13:14:01Z-
dc.date.accessioned2016-10-25T21:00:32Z-
dc.date.available2015-10-21T13:14:01Z-
dc.date.available2016-10-25T21:00:32Z-
dc.date.issued2015-01-01-
dc.identifierhttp://iopscience.iop.org/article/10.1088/1742-6596/574/1/012104/meta-
dc.identifier.citation3rd International Conference On Mathematical Modeling In Physical Sciences (IC-MSQUARE 2014). Bristol: Iop Publishing Ltd, v. 574, p. 1-4, 2015.-
dc.identifier.issn1742-6588-
dc.identifier.urihttp://hdl.handle.net/11449/128820-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/128820-
dc.description.abstractThe sequence alignment is one of the most important tasks in Bioinformatics, playing an important role in the sequences analysis. There are many strategies to perform sequence alignment, since those use deterministic algorithms, as dynamic programming, until those ones, which use heuristic algorithms, as Progressive, Ant Colony (ACO), Genetic Algorithms (GA), Simulated Annealing (SA), among others. In this work, we have implemented the objective function COFFEE in the MSA-GA tool, in substitution of Weighted Sum-of-Pairs (WSP), to improve the final results. In the tests, we were able to verify the approach using COFFEE function achieved better results in 81% of the lower similarity alignments when compared with WSP approach. Moreover, even in the tests with more similar sets, the approach using COFFEE was better in 43% of the times.en
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
dc.format.extent1-4-
dc.language.isoeng-
dc.publisherIop Publishing Ltd-
dc.sourceWeb of Science-
dc.titleImprovements in the sensibility of MSA-GA tool using COFFEE objective functionen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionUniversidade Federal de Santa Catarina (UFSC)-
dc.description.affiliationUniversidade Federal de Santa Catarina, Departamento de Engenharia de Controle e Automação-
dc.description.affiliationUnespUniversidade Estadual Paulista, Departamento de Ciência da Computação e Estatística, Instituto de Biociências, Letras e Ciências Exatas de São José do Rio Preto-
dc.description.sponsorshipIdFAPESP: 2013/08289-0-
dc.identifier.doihttp://dx.doi.org/10.1088/1742-6596/574/1/012104-
dc.identifier.wosWOS:000352595600104-
dc.rights.accessRightsAcesso aberto-
dc.identifier.fileWOS000352595600104.pdf-
dc.relation.ispartof3rd International Conference On Mathematical Modeling In Physical Sciences (IC-MSQUARE 2014)-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.