Você está no menu de acessibilidade

Utilize este identificador para citar ou criar um link para este item: http://acervodigital.unesp.br/handle/11449/128863
Registro de metadados completo
Campo DCValorIdioma
dc.contributor.authorBastos, J.-
dc.contributor.authorMessaoudi, A.-
dc.contributor.authorRodrigues, T.-
dc.contributor.authorSmania, D.-
dc.date.accessioned2015-10-21T13:14:40Z-
dc.date.accessioned2016-10-25T21:00:38Z-
dc.date.available2015-10-21T13:14:40Z-
dc.date.available2016-10-25T21:00:38Z-
dc.date.issued2015-07-11-
dc.identifierhttp://www.sciencedirect.com/science/article/pii/S030439751500314X-
dc.identifier.citationTheoretical Computer Science. Amsterdam: Elsevier Science Bv, v. 588, p. 114-130, 2015.-
dc.identifier.issn0304-3975-
dc.identifier.urihttp://hdl.handle.net/11449/128863-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/128863-
dc.description.abstractIn this paper, we study arithmetical and topological properties for a class of Rauzy fractals R-a given by the polynomial x(3) - ax(2) + x - 1 where a >= 2 is an integer. In particular, we prove the number of neighbors of R-a in the periodic tiling is equal to 8. We also give explicitly an automaton that generates the boundary of R-a. As a consequence, we prove that R-2 is homeomorphic to a topological disk.en
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
dc.format.extent114-130-
dc.language.isoeng-
dc.publisherElsevier B.V.-
dc.sourceWeb of Science-
dc.subjectRauzy fractalsen
dc.subjectNumeration systemen
dc.subjectAutomatonen
dc.subjectTopological propertiesen
dc.titleA class of cubic Rauzy fractalsen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionUniversidade de São Paulo (USP)-
dc.description.affiliationUniversidade Estadual Paulista (UNESP) - Departamento de Matemática,Rua Cristóvão Colombo, 2265, Jardim Nazareth, 15054-000, São José do Rio Preto, SP, Brazil-
dc.description.affiliationUniversidade Estadual Paulista (UNESP) - Departamento de Matemática, AV. Eng. Luiz Ed. Carrijo Coube, 14-01, Vargem Limpa, 17033-360, Bauru, SP, Brazil-
dc.description.affiliationDepartamento de Matemática, ICMC-USP, Avenida do Trabalhador São Carlense, 400, Caixa Postal 668, 13560-970, São Carlos, SP, Brazil-
dc.description.affiliationUnespUniversidade Estadual Paulista (UNESP) - Departamento de Matemática,Rua Cristóvão Colombo, 2265, Jardim Nazareth, 15054-000, São José do Rio Preto, SP, Brazil-
dc.description.affiliationUnespUniversidade Estadual Paulista (UNESP) - Departamento de Matemática, AV. Eng. Luiz Ed. Carrijo Coube, 14-01, Vargem Limpa, 17033-360, Bauru, SP, Brazil-
dc.description.sponsorshipIdCNPq: 305939/2009-2-
dc.description.sponsorshipIdFAPESP: 2013/24541-0-
dc.description.sponsorshipIdFAPESP: 2008/02841-4-
dc.description.sponsorshipIdFAPESP: 2010108654-1-
dc.description.sponsorshipIdCNPq: 303669/2009-8-
dc.description.sponsorshipIdCNPq: 305537/2012-1-
dc.identifier.doihttp://dx.doi.org/10.1016/j.tcs.2015.04.007-
dc.identifier.wosWOS:000357222400010-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofTheoretical Computer Science-
Aparece nas coleções:Artigos, TCCs, Teses e Dissertações da Unesp

Não há nenhum arquivo associado com este item.
 

Itens do Acervo digital da UNESP são protegidos por direitos autorais reservados a menos que seja expresso o contrário.