You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/129033
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFischer, Carlos Norberto-
dc.contributor.authorCarareto, Claudia Marcia-
dc.contributor.authorSantos, Renato Augusto Corrêa dos-
dc.contributor.authorCerri, Ricardo-
dc.contributor.authorCosta, Eduardo-
dc.contributor.authorSchietgat, Leander-
dc.contributor.authorVens, Celine-
dc.date.accessioned2015-10-21T20:14:38Z-
dc.date.accessioned2016-10-25T21:08:12Z-
dc.date.available2015-10-21T20:14:38Z-
dc.date.available2016-10-25T21:08:12Z-
dc.date.issued2015-06-01-
dc.identifierhttp://bioinformatics.oxfordjournals.org/content/31/11/1836-
dc.identifier.citationBioinformatics. Oxford: Oxford Univ Press, v. 31, n. 11, p. 1836-1838, 2015.-
dc.identifier.issn1367-4803-
dc.identifier.urihttp://hdl.handle.net/11449/129033-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/129033-
dc.description.abstractProfile hidden Markov models (profile HMMs) are known to efficiently predict whether an amino acid (AA) sequence belongs to a specific protein family. Profile HMMs can also be used to search for protein domains in genome sequences. In this case, HMMs are typically learned from AA sequences and then used to search on the six-frame translation of nucleotide (NT) sequences. However, this approach demands additional processing of the original data and search results. Here, we propose an alternative and more direct method which converts an AA alignment into an NT one, after which an NT-based HMM is trained to be applied directly on a genome.en
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
dc.format.extent1836-1838-
dc.language.isoeng-
dc.publisherOxford Univ Press-
dc.sourceWeb of Science-
dc.titleLearning HMMs for nucleotide sequences from amino acid alignmentsen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)-
dc.contributor.institutionUniversidade de São Paulo (USP)-
dc.contributor.institutionKatholieke Universiteit Leuven-
dc.description.affiliationUniversidade Federal de São Carlos, Departamento de Ciência da Computação-
dc.description.affiliationUniversidade de São Paulo, Departamento de Ciência da Computação-
dc.description.affiliationKatholieke Universiteit Leuven, Department of Computer Science-
dc.description.affiliationKatholieke Universiteit Leuven, Department of Public Health and Primary Care-
dc.description.affiliationUnespUniversidade Estadual Paulista, Departamento de Estatística, Matemática Aplicada e Computação, Instituto de Geociências e Ciências Exatas de Rio Claro-
dc.description.affiliationUnespUniversidade Estadual Paulista, Departamento de Biologia, Instituto de Biociências de Rio Claro-
dc.description.sponsorshipIdFAPESP: 2012/24774-2-
dc.description.sponsorshipIdFAPESP: 2010/10731-4-
dc.description.sponsorshipIdCNPq: 306493/2013-6-
dc.identifier.doihttp://dx.doi.org/10.1093/bioinformatics/btv054-
dc.identifier.wosWOS:000356625300020-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofBioinformatics-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.