You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/129039
Full metadata record
DC FieldValueLanguage
dc.contributor.authorErmakov, Victor A.-
dc.contributor.authorAlaferdov, Andrei V.-
dc.contributor.authorVaz, Alfredo R.-
dc.contributor.authorPerim, Eric-
dc.contributor.authorAutreto, Pedro A. S.-
dc.contributor.authorPaupitz, Ricardo-
dc.contributor.authorGalvao, Douglas S.-
dc.contributor.authorMoshkalev, Stanislav A.-
dc.date.accessioned2015-10-21T20:15:17Z-
dc.date.accessioned2016-10-25T21:08:13Z-
dc.date.available2015-10-21T20:15:17Z-
dc.date.available2016-10-25T21:08:13Z-
dc.date.issued2015-06-23-
dc.identifierhttp://www.nature.com/articles/srep11546-
dc.identifier.citationScientific Reports. London: Nature Publishing Group, v. 5, 9 p., 2015.-
dc.identifier.issn2045-2322-
dc.identifier.urihttp://hdl.handle.net/11449/129039-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/129039-
dc.description.abstractGraphene, in single layer or multi-layer forms, holds great promise for future electronics and high-temperature applications. Resistance to oxidation, an important property for high-temperature applications, has not yet been extensively investigated. Controlled thinning of multi-layer graphene (MLG), e.g., by plasma or laser processing is another challenge, since the existing methods produce non-uniform thinning or introduce undesirable defects in the basal plane. We report here that heating to extremely high temperatures (exceeding 2000 K) and controllable layer-by-layer burning (thinning) can be achieved by low-power laser processing of suspended high-quality MLG in air in "cold-wall" reactor configuration. In contrast, localized laser heating of supported samples results in non-uniform graphene burning at much higher rates. Fully atomistic molecular dynamics simulations were also performed to reveal details of oxidation mechanisms leading to uniform layer-by-layer graphene gasification. The extraordinary resistance of MLG to oxidation paves the way to novel high-temperature applications as continuum light source or scaffolding material.en
dc.format.extent9-
dc.language.isoeng-
dc.publisherNature Publishing Group-
dc.sourceWeb of Science-
dc.titleBurning Graphene Layer-by-Layeren
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationUniv Estadual Campinas, Ctr Semicond Components, BR-13083870 Campinas, SP, Brazil-
dc.description.affiliationUniv Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083970 Campinas, SP, Brazil-
dc.description.affiliationUNESP, Univ Estadual Paulista, Dept Fis, IGCE, BR-13506900 Rio Claro, SP, Brazil-
dc.description.affiliationUnespUNESP, Univ Estadual Paulista, Dept Fis, IGCE, BR-13506900 Rio Claro, SP, Brazil-
dc.identifier.doihttp://dx.doi.org/10.1038/srep11546-
dc.identifier.wosWOS:000356663700001-
dc.rights.accessRightsAcesso aberto-
dc.identifier.fileWOS000356663700001.pdf-
dc.relation.ispartofScientific Reports-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.