You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/129070
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPereira, Wyllamanney da Silva-
dc.contributor.authorAndres, Juan-
dc.contributor.authorGracia, Lourdes-
dc.contributor.authorSan-Miguel, Miguel A.-
dc.contributor.authorSilva, Edison Z. da-
dc.contributor.authorLongo, Elson-
dc.contributor.authorLongo, Valeria M.-
dc.date.accessioned2015-10-21T20:18:39Z-
dc.date.accessioned2016-10-25T21:08:17Z-
dc.date.available2015-10-21T20:18:39Z-
dc.date.available2016-10-25T21:08:17Z-
dc.date.issued2015-01-01-
dc.identifierhttp://pubs.rsc.org/en/Content/ArticleLanding/2015/CP/C4CP05849F#!divAbstract-
dc.identifier.citationPhysical Chemistry Chemical Physics, v. 17, n. 7, p. 5352-5359, 2015.-
dc.identifier.issn1463-9076-
dc.identifier.urihttp://hdl.handle.net/11449/129070-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/129070-
dc.description.abstractWhy and how Ag is formed when electron beam irradiation takes place on alpha-Ag2WO4 in a vacuum transmission electron microscopy chamber? To find an answer, the atomic-scale mechanisms underlying the formation and growth of Ag on alpha-Ag2WO4 have been investigated by detailed in situ transmission electron microscopy (TEM) and field emission scanning electron microscopy (FE-SEM) studies, density functional theory based calculations and ab initio molecular dynamics simulations. The growth process at different times, chemical composition, size distribution and element distribution were analyzed in depth at the nanoscale level using FE-SEM, operated at different voltages (5, 10, 15, and 20 kV), and TEM with energy dispersive spectroscopy (EDS) characterization. The size of Ag nanoparticles covers a wide range of values. Most of the Ag particles are in the 20-40 nm range. The nucleation and formation of Ag on alpha-Ag2WO4 is a result of structural and electronic changes in the AgOx (x = 2,4, 6, and 7) clusters used as constituent building blocks of this material, consistent with metallic Ag formation. First principle calculations point out that Ag-3 and Ag-4-fold coordinated centers, located in the sub-surface of the (100) surface, are the most energetically favorable to undergo the diffusion process to form metallic Ag. Ab initio molecular dynamics simulations and the nudged elastic band (NEB) method were used to investigate the minimum energy pathways of these Ag atoms from positions in the first slab layer to outward sites on the (100) surface of alpha-Ag2WO4. The results point out that the injection of electrons decreases the activation barrier for this diffusion step and this unusual behavior results from the presence of a lower energy barrier process.en
dc.description.sponsorshipGeneralitat-Valenciana-
dc.description.sponsorshipMinisterio de Economia y Competitividad (Spain)-
dc.description.sponsorshipSpanish Brazilian program-
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)-
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
dc.format.extent5352-5359-
dc.language.isoeng-
dc.publisherRoyal Soc Chemistry-
dc.sourceWeb of Science-
dc.titleElucidating the real-time Ag nanoparticle growth on alpha-Ag2WO4 during electron beam irradiation: experimental evidence and theoretical insightsen
dc.typeoutro-
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)-
dc.contributor.institutionUniv Jaume I (UJI)-
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionUniversidade de São Paulo (USP)-
dc.description.affiliationUniv Fed Sao Carlos, INCTMN UFSCar, BR-13565905 Sao Carlos, SP, Brazil-
dc.description.affiliationUniv Jaume I UJI, Dept Quim Fis &Analit, Castellon de La Plana 12071, Spain-
dc.description.affiliationUniv Campinas Unicamp, Inst Chem, BR-13083970 Campinas, SP, Brazil-
dc.description.affiliationUniv Campinas Unicamp, Inst Phys Gleb Wataghin, BR-13083970 Campinas, SP, Brazil-
dc.description.affiliationUniv Estadual Paulista, INCTMN UNESP, BR-14801907 Araraquara, SP, Brazil-
dc.description.affiliationUniv Sao Paulo, INCTMN USP, Inst Fis Sao Carlos, BR-13560970 Sao Carlos, SP, Brazil-
dc.description.affiliationUnespUniv Estadual Paulista, Departamento de Bioquímica e Tecnologia Química, INCTMN UNESP, BR-14801907 Araraquara, SP, Brazil-
dc.description.sponsorshipIdGeneralitat-Valenciana: Prometeo/2009/053-
dc.description.sponsorshipIdMinisterio de Economia y Competitividad (Spain): CTQ2012-36253-C03-02-
dc.description.sponsorshipIdSpanish Brazilian program: PHB2009-0065-PC-
dc.description.sponsorshipIdFAPESP: 2013/07296-2-
dc.description.sponsorshipIdFAPESP: 2012/14468-1-
dc.description.sponsorshipIdFAPESP: 2010/16970-0-
dc.description.sponsorshipIdFAPESP: 2013/02032-7-
dc.description.sponsorshipIdCNPq: 573636/2008-7-
dc.description.sponsorshipIdCNPq: 150753/2013-6-
dc.description.sponsorshipIdCAPES: 088/2013-
dc.identifier.doihttp://dx.doi.org/10.1039/c4cp05849f-
dc.identifier.wosWOS:000349616400064-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofPhysical Chemistry Chemical Physics-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.