You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/129320
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRodrigues, Eliane R.-
dc.contributor.authorGamerman, Dani-
dc.contributor.authorTarumoto, Mario H.-
dc.contributor.authorTzintzun, Guadalupe-
dc.date.accessioned2015-10-21T20:50:08Z-
dc.date.accessioned2016-10-25T21:08:54Z-
dc.date.available2015-10-21T20:50:08Z-
dc.date.available2016-10-25T21:08:54Z-
dc.date.issued2015-06-01-
dc.identifierhttp://link.springer.com/article/10.1007%2Fs10651-014-0303-6-
dc.identifier.citationEnvironmental And Ecological Statistics. Dordrecht: Springer, v. 22, n. 2, p. 393-422, 2015.-
dc.identifier.issn1352-8505-
dc.identifier.urihttp://hdl.handle.net/11449/129320-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/129320-
dc.description.abstractIn this work we consider a non-homogenous Poisson model to study the behaviour of the number of times that a pollutant's concentration surpasses a given threshold of interest. Spatial dependence is imposed on the parameters of the Poisson intensity function in order to account for the possible correlation between measurements in different sites. An anisotropic model is used due to the nature of the region of interest. Estimation of the parameters of the model is performed using the Bayesian point of view via Markov chain Monte Carlo (MCMC) algorithms. We also consider prediction of the days in which exceedances of the threshold might occur at sites where measurements cannot be taken. This is obtained by spatial interpolation using the information provided by the sites where measurements are available. The prediction procedure allows for estimation of the behaviour of the mean function of the non-homogeneous Poisson process associated with those sites. The models considered here are applied to ozone data obtained from the monitoring network of Mexico City.en
dc.description.sponsorshipDireccion General de Apoyo al Personal Academico of the Universidad Nacional Autonoma de Mexico, Mexico-
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
dc.format.extent393-422-
dc.language.isoeng-
dc.publisherSpringer-
dc.sourceWeb of Science-
dc.subjectAnisotropic modelsen
dc.subjectBayesian inferenceen
dc.subjectMCMC methodsen
dc.subjectNon-homogeneous Poisson modelsen
dc.subjectSpatial interpolationen
dc.subjectSpatial modelsen
dc.titleA non-homogeneous poisson model with spatial anisotropy applied to ozone data from Mexico Cityen
dc.typeoutro-
dc.contributor.institutionUniversidad Nacional Autónoma de México-
dc.contributor.institutionUniversidade Federal do Rio de Janeiro (UFRJ)-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionInstituto Nacional de Ecología y Cambio Climático-
dc.description.affiliationInstituto de Matemáticas, Universidad Nacional Autónoma de México, Area de la Investigación Científica, 04510 , Mexico, DF, Mexico-
dc.description.affiliationDepartamento de Estatística, Instituto de Matemática, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil-
dc.description.affiliationInstituto Nacional de Ecología y Cambio Climático, Secretaría de Medio Ambiente y Recursos Naturales, Mexico-
dc.description.affiliationUnespUniversidade Estadual Paulista, Departamento de Estatística, Faculdade de Ciências e Tecnologia, Universidade Estadual Paulista Júlio de Mesquita Filho, Presidente Prudente, Brazil-
dc.description.sponsorshipIdDireccion General de Apoyo al Personal Academico of the Universidad Nacional Autonoma de Mexico, Mexico: PAPIIT-IN102713-3-
dc.identifier.doihttp://dx.doi.org/10.1007/s10651-014-0303-6-
dc.identifier.wosWOS:000354618100009-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofEnvironmental And Ecological Statistics-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.