You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/129341
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOishi, Cassio Machiaveli-
dc.contributor.authorYuan, Jin Yun-
dc.contributor.authorCuminato, José Alberto-
dc.contributor.authorStewart, David E.-
dc.date.accessioned2015-10-21T20:52:53Z-
dc.date.accessioned2016-10-25T21:08:57Z-
dc.date.available2015-10-21T20:52:53Z-
dc.date.available2016-10-25T21:08:57Z-
dc.date.issued2015-06-01-
dc.identifierhttp://link.springer.com/article/10.1007%2Fs10543-014-0509-x-
dc.identifier.citationBit Numerical Mathematics. Dordrecht: Springer, v. 55, n. 2, p. 487-513, 2015.-
dc.identifier.issn0006-3835-
dc.identifier.urihttp://hdl.handle.net/11449/129341-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/129341-
dc.description.abstractIn this paper, we study the stability of the Crank-Nicolson and Euler schemes for time-dependent diffusion coefficient equations on a staggered grid with explicit and implicit approximations to the Dirichlet boundary conditions. Using the matrix representation for the numerical scheme and boundary conditions it is shown that for implicit boundary conditions the Crank-Nicolson scheme is unrestrictedly stable while it becomes conditionally stable for explicit boundary conditions. Numerical examples are provided illustrating this behavior. For the Euler schemes the results are similar to those for the constant coefficient case. The implicit Euler with implicit or explicit boundary conditions is unrestrictedly stable while the explicit Euler with explicit boundary conditions presents the usual stability restriction on the time step.en
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)-
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
dc.format.extent487-513-
dc.language.isoeng-
dc.publisherSpringer-
dc.sourceWeb of Science-
dc.subjectStability analysisen
dc.subjectCrank-Nicolson schemeen
dc.subjectStaggered gridsen
dc.subjectBoundary conditionsen
dc.subjectNon-constant coefficient diffusion equationsen
dc.titleStability analysis of Crank-Nicolson and Euler schemes for time-dependent diffusion equationsen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionUniversidade Federal do Paraná (UFPR)-
dc.contributor.institutionUniversidade de São Paulo (USP)-
dc.contributor.institutionUniversity of Iowa-
dc.description.affiliationUniversidade Federal do Paraná, Departamento de Matemática-
dc.description.affiliationUniversidade de São Paulo, Departamento de Matemática Aplicada e Estatística-
dc.description.affiliationUniversity of Iowa, Department of Mathematics-
dc.description.affiliationUnespUniversidade Estadual Paulista, Departamento de Matemática e Computação, Faculdade de Ciências e Tecnologia de Presidente Prudente-
dc.identifier.doihttp://dx.doi.org/10.1007/s10543-014-0509-x-
dc.identifier.wosWOS:000354704400007-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofBit Numerical Mathematics-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.